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Abstract

Significance of switching for preventive maintenance in two similar states of the
system is studied comparatively using different failure rates. Also the system is
facilitated with switching for preventive maintenance in second case. Preventive
maintenance is the replacing components or subsystems before they fail in order
to promote continuous system operation. In this paper Reliability and Availability
characteristics of two different series system configurations are calculated, results
are derived with the help of linear differential equation (L.D.E.) solution technique
which is rarely used in the study of such systems. The method L. D. E solution is
used to calculate the Availability and MTSF characteristics. The failure and preven-
tive maintenance times are assumed to have exponential distribution. The failure
times of a component are assumed to be exponentially distributed with parameter
α′, α, β′, β. The preventive maintenance approach rate is also assumed exponen-
tial with parameter λ′, λ. The mean-time-to failure MTTF and the steady-state
availability, AT (∞) is derived for the two system using linear first order differential
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equations. We observed significant change in performance of the system on facili-
tation of switching for preventive maintenance.

1. Introduction

Many authors have studied the two-similar unit redundant system or two-dissimilar unit

redundant system with two or three states to calculate various reliability and availabil-

ity measures, but no attention was paid to the reliability evaluation using preventive

maintenance. Repairable systems receive maintenance actions that restore/renew sys-

tem components when they fail. These actions change the overall makeup of the system.

The standby unit support increases the reliability of the system. On the failure of the

operating unit, a standby unit is switched on by switching device for preventive main-

tenance. A considerable papers has been published on Statistical Analysis of two-unit

redundant systems during the last four decades. Several authors have studied such

systems assuming only “ two” states of operations, namely operative and failed [7, 8].

Many authors [4, 10] have studied the two unit redundant systems with two types of

repair. [3] Have studied stochastic analysis of a two-unit parallel system with partial

and catastrophic failure and preventive maintenance. In [9] evaluate the reliability and

availability of two different systems by using linear first order differential equations.

[11] has studied Cost Analysis of Two-Dissimilar-Unit Cold Standby System with three

States and Preventive Maintenance using Linear First Order Differential Equations.

Many authors [12-15] have studied the stochastic behavior of two-unit cold standby

redundant system. Models have been formulated to treat many situations and obtain

various reliability parameters by using the theories of regenerative process. Markov

renewal process and semi-Markov process.

Author [3, 4, 5] has studied the system of two unit stand by redundant system with

preventive maintenance, inspection and two types of repair. Authors of [2] has discussed

about the importance of switching for preventive maintenance. Authors [1] has discussed

about the solution of linear differential equation technique to resolve and to obtain

reliability and availability characteristics. This technique is very significant in the case

as this will prove a good lead to tedious and lengthy method discussed for same cause in

various research papers [3, 4, 5, 6]. Importance of switching for preventive maintenance

is visible from the calculations made in the paper. The concept of switching does not
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provide great and large results but is very significant providing availability of the system

as it is clear from the calculation performance.

The purpose of this paper is to study the Reliability, MTTF, Steady-state availability

of a two-dissimilar-unit stand by redundant system using Linear Differential Equation

techniques. A Graphical representation of improvement in availabilities of system per-

formance is also discussed.

2. Model Description and Assumptions

The following assumptions are common for both the systems-

(1) The system consists of a single unit having two dissimilar parallel components, say

A & B.

(2) The System remains operative even if a single component operates.

(3) The failure of a component changes the life time parameter of the other.

(4) Upon failure each component can be replaced with a similar component with both

the component (When failed) can be replaced simultaneously.

(5) After Replacement of each component, the system is as good as new. But in

the second system we assume that units at first and second state switches for

preventive maintenance.

(6) Preventive maintenance (e.g. overhaul, inspection, minor repairs, etc.) is provided

to this system at random epochs when the system is in the state S0. Where both

the components are normal.

(7) The system is down when both system failed.

(8) For constructing the model having probabilistic structure of the system, is it as-

sumed that the failure and preventive maintenance times have exponential distri-

bution.

Symbols and State Definition of the system

Symbols : The common symbols to both the systems are:
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α; conditional failure rate of operative unit BN

v′ conditional failure rate of operative unit AN

α unconditional failure rate of operative unit AN

β unconditional failure rate of operative unit BN

β′ replacement rate of failed unit AF

δ′ replacement rate of failed unit BF

θ failure rate of unit B while unit A is already failed
θ′ failure rate of unit A while unit B is already failed
µ replacement rate of failed units A,B
λ rate of taking unit A into preventive maintenance
η completion of preventive maintenance time for unit A
λ′ rate of taking unit B into preventive maintenance
η′ completion of preventive maintenance time for unit B
ATi(∞) system steady state availability, i = 1, 2
Ei expected time to reach an absorbing state, i = 1, 2

For Second System

γ Rate of switching to state 2 for preventive maintenance.
γ′ Rate of switching to state 1 for preventive maintenance.
Pn,i(t) Probability that exactly ‘n’ components are working at time

t, (t ≥ 0) at state Si.
u(t) pdf of time for taking a unit into preventive maintenance i.e,

u(t) = λ exp(−λt), λt > 0
v(t) pdf of preventive maintenance i.e,

v(t) = η exp(−ηt), ηt > 0

State Definition :

A unit can be in one of the following states at time t

AN Component A in normal mode and operative
BN Component B in normal mode and operative
AF Component A in failure mode and needs replacement
BF Component B in failure mode and needs replacement
ANp Component A in normal mode and under preventive maintenance
BNp Component B in normal mode and under preventive maintenance
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3. Case (i) : States of the System for System 1

(a) Up states: S0 = (AN , BN ), S1 = (ANp, BN ), S2 = (AN , BNp), S3 = (AN , BF ), S4 =

(AF , BN )

(b) Downstate: S5 = (AF , BF ).

3.1 Mean Time to System Failure (MTSF1)

Now we calculate, mean time to system failure (MTSF) for the proposed system1 using

the above set of assumptions and Linear Differential Equation techniques. For figure-1,

let Pn,i(t) be the Probability that exactly n component are working at time t, (t . 0)
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at state Si,. If we let P(t) denote the probability row vector at time t, then the initial

conditions for this problem are

P (0) = [P2,0(0), P1,1(0), P1,2(0), P1,3(0), P1,4(0), P0,5(0)] = (1, 0, 0, 0, 0) (1)

Using, the method of Linear Differential Equation, we get following differential equations

:
dP2,0

sdt
= −(λ + λ′ + β + α)P2,0 + ηP1,1 + ηP1,2 + β′P1,3 + δ′P1,4 + µP0,5 (2)

dP1,1

dt
= λP2,0 − (α′ + η)P1,1 + 0P1,2 + 0P1,3 + 0P1,4 + 0P0,5 (3)

dP1,2

dt
= λ′P2,0 + 0P1,1 − (η′ + v′)P1,2 + 0P1,3 + 0P1,4 + 0P0,5 (4)

dP1,3

dt
= αP2,0 + α′P1,1 + 0P1,2 − (β′ + θ)P1,3 + 0P1,4 + 0P0,5 (5)

dP1,4

dt
= βP2,0 + 0P1,1 + v′P1,2 + 0P1,3 − (δ′ + θ′)P1,4 + 0P0,5 (6)

dP0,5

dt
= 0P2,0 + 0P1,1 + 0P1,2 + θP1,3 + θ′P1,4 − µP0,5. (7)

This can be written in the matrix form as

Ṗ = QP (8)

where,

Q =



−(λ + λ′ + β + α) η η′ β′ δ′ µ

λ −(η + α′) 0 0 0 0

λ′ 0 −(η′ + v′) 0 0 0

α α′ 0 −(θ + β′) 0 0

β 0 v′ 0 −(δ′ + θ′) 0

0 0 0 θ θ′ −µ



(9)

To evaluate the transient solution is too complex. Therefore, we will restrict ourselves

in calculating the MTSF1, we take the transpose matrix of Q and delete the rows and
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columns for the absorbing states. The new matrix is called A. the expected time to

reach an absorbing state E1, is calculated from

E1[Tp(0)→p(absorbing)] = P (0)(−A−1)



1
1
1
1
1
1

 (10)

where,

A =



−(λ + λ′ + β + α) λ λ′ α β

η −(η + α′) 0 α′ 0

η′ 0 −(η + v′) 0 v′

β 0 0 −(θ + β′) 0

δ′ 0 0 0 −(δ′ + β′)


(11)

and ∫ ∞

0
eAtdt = −A−1. (12)

We obtain the following explicit expression for the MTSF1

E[Tp(0)→p(absorbing)] = MTSF1 = P (0)(A−1)


1
1
1
1
1

 =

[{(η + α′ + λ)(v′ + η′) + λ′(η + α′)}(β′ + θ) + (ηβ + α′λ + βα′)(v′ + η′)]
(δ′ + θ′) + (v′λ′ + α + η′α)(α′ + η)(β + θ)

θ′(α′ + η)(β′ + θ){v′(λ′ + α) + η′α}+ (δ + θ′){ηβθ(η′ + v′) + θα′(v′β + λv′ + λη′)}
.

(13)

3.2 Availability Analysis of the System 1 [AT1(∞)]

For the availability Equation (1) case in Figure 1, the initial conditions for this problem

are the same as for the reliability case

P (0) = [P2,0(0), P1,1(0), P1,2(0), P1,3(0), P1,4(0), P0,5(0)] = (1, 0, 0, 0, 0).

The differential equation form can be expressed as Ṗ = QP
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Or
0
BBBBBBBBBBBBBBBB@

Ṗ2,0

Ṗ1,1

Ṗ1,2

Ṗ1,3

Ṗ1,4

Ṗ0.5

1
CCCCCCCCCCCCCCCCA

=

0
BBBBBBBBBBBBBBB@

−(λ + λ′ + β + α) η η′ β δ′ µ

λ −(η + α′) 0 0 0 0

λ′ 0 −(η + v′) 0 0 0

α α′ 0 −(θ + β′) 0 0

β 0 v′ 0 −(δ′ + β′) 0

0 0 0 θ θ′ −µ

1
CCCCCCCCCCCCCCCA

0
BBBBBBBBBBBBBBB@

P2,0

P1,1

P1,2

P1,3

P1,4

P0.5

1
CCCCCCCCCCCCCCCA

(14)

The steady state availabilities can be obtained using the following procedure. In the

steady-state, the derivatives of the state probabilities become zero. That allows us to

calculate the steady-state probabilities with

AT1(∞) = 1− P0,5(∞)

and

QP (∞) = 0

or in the matrix form
0
BBBBBBBBBBBBBBB@

−(λ + λ′ + β + α) η η′ β δ′ µ

λ −(η + α′) 0 0 0 0

λ′ 0 −(η + v′) 0 0 0

α α′ 0 −(θ + β′) 0 0

β 0 v′ 0 −(δ′ + β′) 0

0 0 0 θ θ′ −µ

1
CCCCCCCCCCCCCCCA

0
BBBBBBBBBBBBBBB@

P2,0(∞)

P1,1(∞)

P1,2(∞)

P1,3(∞)

P1,4(∞)

P0.5(∞)

1
CCCCCCCCCCCCCCCA

=

0
BBBBBBBBBBBBBBB@

0

0

0

0

0

0

1
CCCCCCCCCCCCCCCA

(15)

To obtain P0,5(∞) we solve above and the following normalization condition:

P2,0(∞) + P1,1(∞) + P1,2(∞) + P1,3(∞) + P1,4(∞) + P1,5(∞) = 1 (16)

We substitute (16) in any one of the redundant rows in (15) to yield
0
BBBBBBBBBBBBBBB@

−(λ + λ′ + β + α) η η′ β δ′ µ

λ −(η + α′) 0 0 0 0

λ′ 0 −(η + v′) 0 0 0

α α′ 0 −(θ + β′) 0 0

β 0 v′ 0 −(δ′ + β′) 0

1 1 1 1 1 1

1
CCCCCCCCCCCCCCCA

0
BBBBBBBBBBBBBBB@

P2,0(∞)

P1,1(∞)

P1,2(∞)

P1,3(∞)

P1,4(∞)

P0.5(∞)

1
CCCCCCCCCCCCCCCA

=

0
BBBBBBBBBBBBBBB@

0

0

0

0

0

1

1
CCCCCCCCCCCCCCCA

(17)
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The solution above of (17) provides the steady state probabilities in the availability

case. For Figure 1, the explicit expression for AT1(∞) is given by,

AT1(∞) =
µ · (θ′ + δ′)(θ + β′)(η + α′)(γ′ + η′)

(µ · α · (λ + η) · (η′ + γ′)(β′ + θ) + (λ + β)(δ′ + θ′)(γ′ + η′)β′ · α′
+λ′ · β′ · θ′ · γ′ · α′ + η · η′ · α · β′ · µ + (η′ + γ′)θ · µ{η · α + η + λ}
+η · γ′ · θ · λ′ · µ + (α + λ′)η · γ′ · β′ · µ + {(η · γ′ + η′ · α′ + η · η′)
(β + β′) · µ + (α′ + η)(θ + β′)λ′ · µ ·+η′ · λ · µ · (α′ + β′)
+ηγ′α′ · β′ · µ + (γ′ + θ)η′ · α′µ + η · β′ · γ′ + η · µη′ · β}(δ′ + θ′)
+{α · µ · α′(γ′ + η′) + η · λ′ · θ′ · γ′}(θ + β′) + (η′ · α′ + γ′ · θ)
θ′ · λ · µ · α′ + θ · λ′ · γ′ · α′(θ′ + µ) + γ′ · θ′ · λ · µ(α′ + β′)
+γ′ · α′ · θ′ · β · µ + (λ′ · α′ + δ′ · λ)γ′ · β′ · µ + γ′ · δ′ · α′ · µ · (β + λ))

(18)
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4. Case (ii) Switching of State 1 and 2 for Preventive Maintenance

(a) Up states : S0 = (AN , BN ), S1 = (ANp, BN ), S2 = (AN , BNp), S3 = (AN , BF ), S4 =

(AF , BN )

(b) Down state : S5 = (AF , BF ).

4.1 Mean Time to System Failure (MTSF2)

For figure (2), we obtain the following differential equation for this problem are :

dP ′1,1

dt
= λP2,0 − (α′ + η + γ)P1,1 + γ′P1,2 + 0P1,3 + 0P1,4 + 0P0,5 (19)

dP ′1,2

dt
= λ′P2,0 + γP ′1,1 − (η + v′ + γ′)P1,2 + 0P1,3 + 0P1,4 + 0P0,5. (20)

Equation (19) and (20) with equation in case (4)-(7) yields in to the form

Ṗ = QP

where,

Q′ =



−(λ + λ′ + β + α) η η′ β δ′ µ

λ −(η + α′ + γ′) γ 0 0 0

λ′ γ′ −(η + α′ + γ) 0 0 0

α α′ 0 −(θ + β) 0 0

β 0 v′ 0 −(δ′ + β′) 0

0 0 0 θ θ′ −µ


(21)

To evaluate the transient solution is too complex. Therefore, we will restrict ourselves

in calculating the MTSF2; we take the transpose matrix of Q and delete the rows and

columns for the absorbing states. The new matrix is called B, the expected time to

reach an absorbing states is calculated from

E1[Tp(0)→p(absorbing)] = P (0)(−B−1)



1
1
1
1
1
1
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where,

B =



−(λ + λ′ + β + α) λ λ′ α β

η −(η + α′ + γ′) γ′ α′ 0

η′ γ −(η + v′ + γ) 0 v′

β 0 0 −(θ + β′) 0

δ′ 0 0 0 −(δ′ + β′)


(22)

and ∫ ∞

0
eAtdt = −B−1.

We obtain the following explicit expression for the MTSF2

E1[Tp(0)→p(absorbing)] = P (0)(−B−1)



1
1
1
1
1
1



MTTF2 =

{(θ + β′)((δ′ + θ′)η · γ + (v′ + η′)(η′ · α′ + η · δ′) + v′ · γ′ · θ′)
+ {α′ · γ · β′ ·+θ · η′ · γ}(θ′ + δ′) + (v′ + η) · (θ + β′)((α′ + η) · θ′ + δ′ · γ′)
+θ′ · β′ · η′ · γ′ + θ · δ · α′γ}+ (θ + β′) · (δ + θ′) · ((λ + λ′) · (γ + v′ · a) + η · λ)
+(δ + θ′) · {(θ + β′) · (η · b + λ · p + λ′ · (α′ + γ′)) + θ · λ′γ′}+ {η · βγ(δ′ + θ′)}
+{η · (δ′ + θ′) + δ′ · γ′}β · (v′ + η′) + ((η′ + γ)δ′α′ + (δ′ + θ′)v′ · f)(λ + β)
+(λ + λ′) · θ′ · α′ · γ + θ′ · η′ · β · (α′ + γ′) + θ′ · β · (v′ · γ′ + γ · α′)
+(θ′ · η′ · λ · α′ + δ′ · λ′ · α′ · γ) + (η + γ′ + α′)α · θ(v′ + η′)
+{(η + α′)γ · α + η · λ′ · v′ + λ′ · α′β′}(θ + β′) + θ · v′ · γ′(λ + λ′)
+(λ′ + α)v′ · γ · β′ + (v′ · λ + η′ · α) · γ′β′ + α · v′ · β′(η + α)

θ′ {((θ + β′)(α′ + η) + γ′ · β′) · α(v′ + η′) + λ′ · α′ · β′(v′ + γ)
+((λ + λ′) · v′ · γ′ + γ · α(η + α′))β′ + ((θ + β′)λ′ · v′ + (θ + α′)γ · α)η
+(λ′ + α)(λ′ · α′ + λγ′)(α′ + γ′)θ · v′}+ (δ′ + θ′) {((γ + v′ + η′) · η
+ (v′ + η′) · γ) · β · β′ + ((λ + β)(v′ + λ) + h · λ) · α′β′}+ λ′ · α′ · γ · β′ · δ′
+θ · η · α · γ′ · θ′

(23)
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4.2 Availability Analysis of the System 2[AT2(∞)]

For the availability of figure 2, the initial conditions are the same as for the reliability

case

P (0) = [P2,0(0), P ′1,1(0), P ′1,2(0), P1,3(0), P1,4(0), P0,5(0)] = (1, 0, 0, 0, 0, 0).

The differential equation can be expressed as

0
BBBBBBBBBBBBBBBB@

Ṗ2,0

Ṗ1,1

Ṗ1,2

Ṗ1,3

Ṗ1,4

Ṗ0.5

1
CCCCCCCCCCCCCCCCA

=

0
BBBBBBBBBBBBBBB@

−(λ + λ′ + β + α) η η′ β δ′ µ

λ −(η + α′ + γ) γ 0 0 0

λ′ γ′ −(η + v + γ) 0 0 0

α α′ 0 −(θ + β′) 0 0

β 0 v′ 0 −(δ′ + β′) 0

0 0 0 θ θ′ −µ

1
CCCCCCCCCCCCCCCA

0
BBBBBBBBBBBBBBB@

P2,0

P1,1

P1,2

P1,3

P1,4

P0.5

1
CCCCCCCCCCCCCCCA

(24)

The steady state availabilities can be obtained using the following procedure in the

steady state, the derivatives of the state probabilities becomes zero. That allows us to

calculate the steady state probabilities with

AT2(∞) = 1− P0,5(∞)

and

QP (∞) = 0

or in the matrix form

0
BBBBBBBBBBBBBBB@

−(λ + λ′ + β + α) η η′ β δ′ µ

λ −(η + α′ + γ′) γ 0 0 0

λ′ γ′ −(η + v′ + γ) 0 0 0

α α′ 0 −(θ + β′) 0 0

β 0 v′ 0 −(δ′ + β′) 0

0 0 0 θ θ′ −µ

1
CCCCCCCCCCCCCCCA

0
BBBBBBBBBBBBBBB@

P2,0(∞)

P1,1(∞)

P1,2(∞)

P1,3(∞)

P1,4(∞)

P0.5(∞)

1
CCCCCCCCCCCCCCCA

=

0
BBBBBBBBBBBBBBB@

0

0

0

0

0

1

1
CCCCCCCCCCCCCCCA

(25)

To obtain P0,3(∞) we solve above and the following normalization condition:

P2,0(∞) + P1,1(∞) + P1,2(∞) + P1,3(∞) + P1,4(∞) + P1,5(∞) = 1



RELIABILITY AND AVAILABILITY CHARACTERISTICS OF... 89

We substitute (10) in any one of the redundant rows in (9) to yield

0
BBBBBBBBBBBBBBB@

−(λ + λ′ + β + α) η η′ β δ′ µ

λ −(η + α′ + γ′) γ 0 0 0

λ′ γ′ −(η + v′ + γ) 0 0 0

α α′ 0 −(θ + β′) 0 0

β 0 v′ 0 −(δ′ + β′) 0

1 1 1 1 1 1

1
CCCCCCCCCCCCCCCA

0
BBBBBBBBBBBBBBB@

P2,0(∞)

P1,1(∞)

P1,2(∞)

P1,3(∞)

P1,4(∞)

P0.5(∞)

1
CCCCCCCCCCCCCCCA

=

0
BBBBBBBBBBBBBBB@

0

0

0

0

0

1

1
CCCCCCCCCCCCCCCA

(26)

The solution above of (26) provides the steady state probabilities in the availability

case. For Figure 2, the explicit expression for AT2(∞) is given by the following equations

AT2(∞) =

µ · (θ′ + β′) [η · γ(θ′ + β′) + δ(v′ + η′)(α′ + η) + v′ · γ′ · (θ′ + δ′)
+2θ′ · (v′ + η′) · (α′ + θ′) + (θ′ + δ′) · (η′ + α′) · (γ′ + γ)]

[{λ′ · v′ · θ′(θ + β′) + (δ′ + θ′) · v′ · β′ · β + θ′ · η′ · β · β′ + µ · δ′ · v′ · β}
(α′ + γ′) + δ′ · η · β · β′ · (v′ + γ) + θ′ · η · β · v′ · β′ + θ′ · η · θ · γ + α
+η′ · δ′ · α′ · β′(β + λ) + {(µ + β)λ′ · γ + η′ · η · α′β · β′ + µ · η · γ · β
+(µ + β′)v′ · λ · α′ + µ · η′ · λ · α′}(δ′ + θ′) + θ′ · η′ · λ · α′ · β′
+θ′ · η · γ · β′(β + α) + 4γ · α′ · (µ + β′)(θ′ + δ′)(λ + β)δ′ · η′ · β · β′ · γ′
+µ · δ′ · v′(η · β + α′ · β′) + θ′ · α · γ′(θ + β′)(γ +′ +η′)
+µ · β(δ′ · η′ + θ′ · η′ + θ′ · v′)(η + α′ + γ′) + v′ · λ · γ′ · θ′
+µ · γ · α · α′ · β′ + {µ · (θ′ · λ′ + η′α) · (γ + α′ + η) + µ · η′(δ′ + θ′)
(µ · η′(γ′ + η + α′ + λ) + γ′v′ + µ · α′ · γ) + µ · λ′ · (δ + v′)(γ′ + α′ + η)
+α · θ′ · α′γ + µ · θ′ · v′ · (α′ + λ) + µ · λ′ · β′ · γ + µ · θ′ · λ · (γ + γ′)
+µ · θ′ · λ′ · γ′ + µ · δ′ · η · α′ + λ′ · θ′ · η · v′ + µ · η · (v′ + γ) · α
+µ · v′ · γ′(λ + α) + µ · α · v′ · α′ + v′ · λ · γ′ · θ′ + µ · δ′ · λ · (v′ + γ′)
+θ′ · (η + α′) · (v′ + η′) + µ · δ′ · λ · γ}(θ + β′)]

(27)

5. Calculations

To observe the effect of switching for preventive maintenance in the systems, we

assume following parameters; fixing γ and γ′ with 0.5 and β = 1.5, α = 1.5, η = 3,

acuteα = 2.8, β′ = 2.5, ή = 2.75, v′ = 2, θ = 3.5, δ′ = 2.8, θ′ = 2.0 while the frequent

change in some of the parameters is done, and shown in following tables.

5.1 Results of MTSF for Figure 1 and Figure 2

(a) When failure rates are common:
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Table (1)

Failure rate (common) λ = λ′ = 0.25 λ = λ′ = 0.3 λ = λ′ = 0.5
System 1 1.0533 1.0554 10634
System 2 1.0243 1.0212 1.0098

(b) When failure rate are different

Table (2)

Failure rates λ = 0.3, λ′ = 0.25 λ = 0.5, λ′ = 0.75
Figure 1 1.2568 1.0791
Figure 2 1.1952 1.0116

5.2 Results of the Availability of Systems Shown in Figure 1 and Figure 2

(a) When failure rate are common

Table (3)

Failure rate λ = λ′ = 0.25 λ = λ′ = 0.30 λ = λ′ = 0.5
Figure 1 0.4753 0.4679 0.4405
Figure 2 0.4761 0.4724 0.4419

(b) When failure rate are different

Table (4)

Failure rate λ = 0.3, λ′ = 0.25 λ = 0.5, λ′ = 0.75
Figure 1 0.4717 0.4230
Figure 2 0.4726 0.4262

Graphs showing improvement in availabilities corresponding to table (3) and

(4)
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Series 1: SHOWS PERFOMANCE OF SYSTEM DISCRIBED IN FIGURE 2

Series 2: SHOWS PERFOMANCE OF SYSTEM DISCRIBED IN FIGURE 1 .

6. Conclusions

This is very clear from graph (A) and graph (B) that on application of switching for

switching for preventive maintenance between states (1)and (2)results in increasing

availability of the system in both the cases for common failure rates as well with differ-

ent failure rates. While mean time to failure is significantly reduced in both the cases

after applying switching in between states S1 and S2.
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