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Abstract
A convolution is a mapping C of the set Z+ of positive integers into the set P(Z+)
of all subsets of Z+ such that, for any n ∈ Z+ , each member of C(n) is a divisor of
n. If D(n) is the set of all divisors of n, for any n, then D is called the Dirichlet’s
convolution [2]. If U(n) is the set of all Unitary (square free) divisors of n , for any
n, then U is called unitary (square free) convolution. Corresponding to any general
convolution C, we can define a binary relation ≤C on Z+ by ‘m ≤C n if and only
if m ∈ C(n) ’. In this paper, we present a characterization for the prime filters in
(Z+,≤C) , where ≤C is the binary relation induced by the convolution C.

1. Introduction

A convolution is a mapping C of the set Z+ of positive integers into the set P(Z+) of

subsets of Z+ such that, for any n ∈ Z+, Cn is a nonempty set of divisors of n. If

C(n) is the set of all divisors of n, for each n ∈ Z+, then C is the classical Dirichlet

convolution [2]. If C(n) = ({d/d|n and (d, n
d ) = 1}), then C is the Unitary convolution
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Key Words : Partial order, Lattice, Convolution, Multiplicative convolution, Filter, Prime Fil-

ter.

2010 AMS Subject Classification : 06B10,11A99.

c© http: //www.ascent-journals.com

1



2 SANKAR SAGI

[1]. As another example if Ç(n)={d/d|n and mk does not divide d for any m ∈ Z+}
then C is the k-free convolution.

C(n) = {d/d|n and (d,
n

d
) = 1}.

Corresponding to any convolution C, we can define a binary relation ≤C in a natural

way by

(m ≤C n) if and only if m ∈ C(n).

) ≤C is a partial order on Z+ and is called partial order induced by the convolution

C ([6], [7]). In this paper, we discuss filters in (N ,≤p
C) and characterization of prime

filters of (Z+,≤C) in terms of those of (N ,≤p
C).

2. Preliminaries

Let us recall that a partial order on a non-empty set X is defined as a binary relation ≤
on X which is reflexive (a ≤ a), transitive (a ≤ b, b ≤ c =⇒ a ≤ c) and antisymmetric

(a ≤ b, b ≤ a =⇒ a = b) and that a pair (X,≤) is called a partially ordered set(poset)

if X is a non-empty set and ≤ is a partial order on X. For any A ⊆ X and x ∈ X,

x is called a lower(upper) bound of A if x ≤ a(respectively a ≤ x) for all a ∈ A. We

have the usual notations of the greatest lower bound(glb) and least upper bound(lub)

of A in X. If A is a finite subset {a1, a2, · · · , an}, the glb of A(lub of A) is denoted

by a1 ∧ a2 ∧ · · · ∧ an or
n∧

i=1
ai (respectively by a1 ∨ a2 ∨ · · · ∨ an or

n∨
i=1

ai). A partially

ordered set (X,≤) is called a meet semi lattice if a ∧ b (=glb{a, b}) exists for all a

and b ∈ X. (X,≤) is called a join semi lattice if a ∨ b (=lub{a, b}) exists for all a

and b ∈ X. A poset (X,≤) is called a lattice if it is both a meet and join semi lattice.

Equivalently, lattice can also be defined as an algebraic system (X,∧,∨), where ∧ and ∨
are binary operations which are associative, commutative and idempotent and satisfying

the absorption laws, namely a ∧ (a ∨ b) = a = a ∨ (a ∧ b) for all a, b ∈ X ; in this case

the partial order ≤ on X is such that a∧ b and a∨ b are respectively the glb and lub of

{a, b}. The algebraic operations ∧ and ∨ and the partial order ≤ are related by

a = a ∧ b ⇐⇒ a ≤ b ⇐⇒ a ∨ b = b.
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Throughout the paper, Z+ and N denote the set of positive integers and the set of

non-negative integers respectively.

Definition 1 : A mapping C : Z+ −→ P(Z+) is called a convolution if the following

are satisfied for any n ∈ Z+.

(1) C(n) is a set of positive divisors of n

(2) n ∈ C(n)

(3) C(n) =
⋃

m∈C(n)

C(m).

Definition 2 : For any convolution C and m and n ∈ Z+, we define

m ≤ n if and only if m ∈ C(n)

Then ≤C is a partial order on Z+ and is called the partial order induced by C on Z+.

In fact, for any mapping C : Z+ −→ P(Z+) such that each member of C(n) is a divisor

of n, ≤C is a partial order on Z+ if and only if C is a convolution [7], as defined above.

Definition 3 : For any subset A of Z+ and for any prime number p, let

Ap = { θ(n)(p) | n ∈ A}

Then Ap is a subset of N for each p ∈ P .

We have the following two theorems on filters in (Z+,≤C) and (N ,≤p
C).

Theorem 1 : Let F be a filter of (Z+,≤C). Then F p is a filter of (N ,≤p
C) for each

p ∈ P and F = { n ∈ Z+ | θ(n)(p) ∈ F p for all p ∈ P } [3].

Theorem 2 : Let F be the set of all filters of (Z+,≤C) and F p be that of (N ,≤p
C) for

each p ∈ P . Let∑
p∈P

Fp = { f : P −→
⋃

p∈P

Fp and f(p) = N for all but finite number of p′s }

Then
∑
p∈P

Fp is a partially ordered set with respect to the partial order defined by

f ≤ g if and only if f(p) ⊆ g(p) for all p ∈ P

and F is order isomorphic with
∑
p∈P

Fp [3].

3. Prime Filters in (Z+,≤C)

Definition 4 : Let (S,∧) be a meet semi lattice. A proper filter F of S is called a

prime filter if, for any a and b in S,
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a ∨ b exists in S and a ∨ b ∈ F =⇒ a ∈ F or b ∈ F .

Note that the concept of prime filter is not just the dual of a prime ideal in a meet semi

lattice. Recall that a proper ideal I is prime if and only if, for any ideals J and K,

J ∩K ⊆ I =⇒ J ⊆ I or K ⊆ I.

However, we have the following.

Theorem 3 : Let F be a proper filter of a meet semi lattice (S,∧) satisfying the

property that, for any filters G and H of S,

G ∩H ⊆ F =⇒ G ⊆ F or H ⊆ F .

Then F is a prime filter.

Proof : Let a and b ∈ S such that a ∨ b exists and a ∨ b ∈ F . Then, consider the

principal filters [a) and [b). We have

[a) ∩ [b) = [a ∨ b) ⊆ F .

and, from the hypothesis, [a) ⊆ F or [b) ⊆ F so that a ∈ F or b ∈ F .

Thus F is a prime filter.

The converse of the above theorem is not true in general. For, consider the following.

Example 1 : Consider the semi lattice (S,∧) whose Hasse diagram is given below.

Let F = [x) = {x}. If a and b ∈ S such that a ∨ b exists and a ∨ b ∈ F , then a ∨ b = x

and hence one of a and b must be x (Note that x ∨ y, y ∨ z, x ∨ z do not exist in S).

Therefore F is a prime filter. But,

[y) ∩ [z) = ∅ ⊆ F and [y) * F and [z) * F .
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Even though the converse of theorem 3. is not true in a meet semi lattice, this is true

in the case of a lattice.

Theorem 4 : Let (L,∧,∨) be a lattice and F a proper filter of L. Then F is a prime

filter if and only if, for any filters G and H in L,

G ∩H ⊆ F =⇒ G ⊆ F or H ⊆ F .

Proof : Suppose that F is a prime filter and G and H are filters of L such that G * F

and H * F . Then, we can choose elements a ∈ G and a ∈ H such that a /∈ F and

b /∈ F . Since F is prime, we have a ∨ b /∈ F .

But a ∨ b ∈ G and a ∨ b ∈ H and hence a ∨ b ∈ G ∩ H. Therefore G ∩ H * F . The

converse is proved in Theorem 3.

From the above theorem, it follows that a proper filter F of a lattice L is prime if and

only if F is a prime element in the lattice of filters of L.

Definition 5 : Let (S,∧) be a meet semi lattice with smallest element 0 and let 0 6=
x ∈ S. x is said to be join-irreducible and y and z ∈ S and x = y∨z =⇒ x = y or x = z.

Theorem 5 : Let x be any element in a meet semi lattice (S,∧). If [x) is a prime filter

of S, then x is join-irreducible.

Proof : Suppose that x is not join-irreducible. Then there exist elements y and z such

that

y < x, z < x and y ∨ z exists and equals to x.

Now, y ∨ z ∈ [x) and y /∈ [x) and z /∈ [x) and hence [x) is not a prime filter.

The converse of the theorem is not true, even in the case of lattices. For, consider the

example given below.

Example 2 : Let (L,∧,∨) be the lattice whose Hasse diagram is given below.



6 SANKAR SAGI

Here x is join-irreducible(since 0 is the only element which is strictly less than x). But

y ∨ z = 1 ∈ [x) and y /∈ [x) and z /∈ [x) and hence [x) is not a prime filter.

However, in the case of distributive lattices, we have the following theorem.

Theorem 6 : Let (L,∧,∨) be a distributive lattice and x ∈ L. Then [x) is a prime

filter if and only if x is join-irreducible.

Proof : Note that [x) = L if and only if x is the smallest element of L. Suppose that

x is join-irreducible. Then x 6= 0 and hence [x) is a proper filter. If y ∨ z ∈ [x), then

x ≤ y ∨ z and therefore

x = x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z).

Since x is join-irreducible, x = x∧ y or x = x∧ z and therefore y ∈ [x) or z ∈ [x). Thus

[x) is a prime filter. The converse is proved in Theorem 5.

Now, we shall determine all the prime filters of the meet semi lattice (Z+,≤C) where

C is a multiplicative convolution which is closed under finite intersections.

We have the following theorem on irreducible elements in meet semi lattice (Z+,≤C).

Theorem 7 : Let C be a multiplicative convolution such that (Z+,≤C) is meet semi

lattice and x ∈ Z+. Then x is join-irreducible in (Z+,≤C) if and only if x = pa for

some prime number p and a join-irreducible element a in (N ,≤p
C) [4] [5].

Theorem 8 : Let F be a prime filter of (Z+,≤C). Then F = [pa) for some prime

number p and a positive integer a which is join-irreducible in (N ,≤p
C).

Proof : By hypothesis, F is a prime filter. That is, there exists x ∈ Z+ such that

F = [x). By Theorem 5, x is join-irreducible. Also, by Theorem 7 , x = pa for some

prime number p and a join-irreducible element a in (N ,≤p
C). Thus F = [pa).

The converse of the above theorem is not true, even when (Z+,≤C) is a lattice. For,

consider the following.

Example 3 : For any prime number p and a ∈ N , define

C(pa) =
{
{1, pa} if a < 4
{1, p, p2, · · · , pa} if a ≥ 4

and extend C to Z+ multiplicatively; that is

C(
r∏

i=1
pai

i ) =
r∏

i=1
C(pai

i )
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for any distinct primes p1, p2, · · · , pr and a1, a2, · · · , ar ∈ N
Then C is a multiplicative convolution such that (Z+,≤C) is a lattice.

The Hasse diagram for (N ,≤p
C) is given below, for any prime number p.

Clearly 1 is join-irreducible in (N ,≤2
C). But [21) is not a prime filter, since 22 ∨ 23 =

24 ∈ [21), 22 /∈ [21) and 23 /∈ [21)

However, we have the following

Theorem 9 : Suppose that (Z+,≤C) is a distributive lattice and F a filter of (Z+,≤C).

Then F is a prime filter if and only if F = [pa) where p is a prime number and a is join

irreducible in (N ,≤p
C).

Proof : This follows from Theorem 6 and Theorem 7.

In the following we get another characterization of prime filters of

(Z+,≤C) in terms of those of (N ,≤p
C).

For any filter F of (Z+,≤C) and for any p ∈ P , we define

F p = { θ(n)(p) | n ∈ F }
where θ(n)(p) is the largest a ∈ N such that pa divides n

Theorem 10 : A filter (Z+,≤C) is prime if and only if there exists unique p ∈ P such

that F p is a prime filter of (N ,≤p
C) and F q = N for all q 6= p in P and, in this case,

F = { n ∈ Z+ | θ(n)(p) ∈ F p }.

Proof : Suppose that F is a prime filter of (Z+,≤C). Then, by Theorem 8, F = [pa)

for some p ∈ P and for some a ∈ N . For this p, we prove that F p is a prime filter of

(N ,≤p
C). Also,
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F p = { θ(n)(p) | n ∈ F }
= { θ(n)(p) | pa ≤C n }
= { b ∈ N | a ≤p

C b } = [a) in (N ,≤p
C)

Since a > 0, [a) and hence F p is a proper filter of (N ,≤p
C).

Observe that, for any m ∈ Z+ such that p does not divide m, we have pa ∧m = 1 and,

since pa ∈ F and F is a proper filter of (Z+,≤C), we get that m /∈ F . Let b and c ∈ N
such that b ∨ c exists in (N ,≤p

C) and b ∨ c ∈ F p = [a). Then b ∨ c = θ(n)(p) for some

n ∈ F . Let us write n = pb∨c.m, where m ∈ Z+ such that (p,m) = 1. Since b ∨ c exists

in (N ,≤p
C), it follows that pb ∨ pc exists in (Z+,≤C) and is equal to pb∨c. Also, since

(p,m) = 1, (pb∨c,m) is also 1 and hence pb∨c.m = n. Therefore

pb ∨ pc ∨m = n ∈ F

Since (p,m) = 1, p does not divide m and hence m /∈ F . Since F is prime, pb ∈ F or

pc ∈ F and therefore b ∈ F p or c ∈ F p. Thus F p is prime.

Also, for any p 6= q ∈ P ,

b ∈ N =⇒ pa ≤C pa.qb

=⇒ pa.qb ∈ [pa) = F

=⇒ b = θ(pa.qb)(q) ∈ F q

and hence F q = N for all p 6= q ∈ P . The uniqueness of p is trivial. Further, by

Theorem 1,

F = { n ∈ Z+ | θ(n)(q) ∈ F q for all q ∈ P} = { n ∈ Z+ | θ(n)(p) ∈ F p}

since F q = N for all q 6= p.

Conversely suppose that there exists p ∈ P such that F p is a prime filter of (N ,≤p
C) and

F q = N for all p 6= q ∈ N . Let m and n ∈ Z+ such that m ∨ n exists in (Z+,≤C) and

m∨n ∈ F . Then θ(m)(p)∨ θ(n)(p) exists in (N ,≤p
C) and is equal to θ(m∨n)(p) ∈ F p.

Since F p is a prime filter, either θ(m)(p) ∈ F or θ(n)(p) ∈ F . Since F q = N for all

q 6= p ∈ N , we get that

θ(m)(q) ∈ F q for all q ∈ P
or θ(n)(q) ∈ F q for all q ∈ P .
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Since F = {k ∈ Z+ | θ(k)(q) ∈ F q for all q ∈ P }, by Theorem 1, we have m ∈ F or

n ∈ F . Thus F is a prime filter of (Z+,≤C).

Theorem 11 : Let (S,∧) be any meet semi lattice. Then every proper filter of (S,∧)

is prime if and only if, for any x and y in S,

x ∨ y exists in S ⇔ x and y are comparable.

Proof : Suppose that every proper filter of (S,∧) is prime. Let x and y ∈ S. If x and

y are comparable, then clearly x∨ y exists in S.On the other hand, suppose x∨ y exists

and x ∨ y = z. If [z) = S, then x and y ∈ [z) and hence x = z = y. If [z) 6= S, then by

hypothesis, [z) is a prime filter and x∨y ∈ [z) and hence x ∈ [z) or y ∈ [z) so that x = z

or y = z. Therefore x = x ∨ y or y = x ∨ y, which imply that x and y are comparable.

The converse is trivial.
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