International J. of Pure & Engg. Mathematics (IJPEM) ISSN 2348-3881, Vol. 3 No. III (December, 2015), pp. 1-9

CHARACTERIZATION OF PRIME FILTERS IN (\mathcal{Z}^+, \leq_C)

SANKAR SAGI

Assistant Professor, College of Applied Sciences, Sohar, Sultanate of Oman E-mail: sagi_sankar@yahoo.co.in

Abstract

A convolution is a mapping \mathcal{C} of the set Z^+ of positive integers into the set $\mathcal{P}(Z^+)$ of all subsets of Z^+ such that, for any $n \in Z^+$, each member of C(n) is a divisor of n. If D(n) is the set of all divisors of n, for any n, then D is called the Dirichlet's convolution [2]. If U(n) is the set of all Unitary (square free) divisors of n, for any n, then U is called unitary (square free) convolution. Corresponding to any general convolution C, we can define a binary relation \leq_C on Z^+ by ' $m \leq_C n$ if and only if $m \in C(n)$ '. In this paper, we present a characterization for the prime filters in (\mathcal{Z}^+, \leq_C) , where \leq_C is the binary relation induced by the convolution \mathcal{C} .

1. Introduction

A convolution is a mapping C of the set Z^+ of positive integers into the set $\mathcal{P}(Z^+)$ of subsets of Z^+ such that, for any $n \in Z^+$, Cn is a nonempty set of divisors of n. If C(n) is the set of all divisors of n, for each $n \in Z^+$, then C is the classical Dirichlet convolution [2]. If $C(n) = (\{d/d | n \text{ and } (d, \frac{n}{d}) = 1\})$, then C is the Unitary convolution

Key Words : Partial order, Lattice, Convolution, Multiplicative convolution, Filter, Prime Filter.

2010 AMS Subject Classification : 06B10,11A99.

© http://www.ascent-journals.com

[1]. As another example if $\mathcal{Q}(n) = \{d/d | n \text{ and } m^k \text{ does not } divide d \text{ for any } m \in \mathbb{Z}^+\}$ then \mathcal{C} is the k-free convolution.

$$C(n) = \{d/d | n \text{ and } (d, \frac{n}{d}) = 1\}.$$

Corresponding to any convolution \mathcal{C} , we can define a binary relation $\leq_{\mathcal{C}}$ in a natural way by

$$(m \leq_{\mathcal{C}} n)$$
 if and only if $m \in \mathcal{C}(n)$.

) $\leq_{\mathcal{C}}$ is a partial order on \mathcal{Z}^+ and is called partial order induced by the convolution \mathcal{C} ([6], [7]). In this paper, we discuss filters in (\mathcal{N}, \leq_C^p) and characterization of prime filters of (\mathcal{Z}^+, \leq_C) in terms of those of (\mathcal{N}, \leq_C^p) .

2. Preliminaries

Let us recall that a partial order on a non-empty set X is defined as a binary relation \leq on X which is reflexive $(a \le a)$, transitive $(a \le b, b \le c \Longrightarrow a \le c)$ and antisymmetric $(a \leq b, b \leq a \Longrightarrow a = b)$ and that a pair (X, \leq) is called a partially ordered set(poset) if X is a non-empty set and \leq is a partial order on X. For any $A \subseteq X$ and $x \in X$, x is called a lower(upper) bound of A if $x \leq a$ (respectively $a \leq x$) for all $a \in A$. We have the usual notations of the greatest lower bound(glb) and least upper bound(lub) of A in X. If A is a finite subset $\{a_1, a_2, \dots, a_n\}$, the glb of A(lub of A) is denoted by $a_1 \wedge a_2 \wedge \cdots \wedge a_n$ or $\bigwedge_{i=1}^n a_i$ (respectively by $a_1 \vee a_2 \vee \cdots \vee a_n$ or $\bigvee_{i=1}^n a_i$). A partially ordered set (X, \leq) is called a meet semi lattice if $a \wedge b$ $(=glb\{a, b\})$ exists for all a and $b \in X$. (X, \leq) is called a join semi lattice if $a \vee b$ (=lub{a, b}) exists for all a and $b \in X$. A poset (X, \leq) is called a lattice if it is both a meet and join semi lattice. Equivalently, lattice can also be defined as an algebraic system (X, \wedge, \vee) , where \wedge and \vee are binary operations which are associative, commutative and idempotent and satisfying the absorption laws, namely $a \wedge (a \vee b) = a = a \vee (a \wedge b)$ for all $a, b \in X$; in this case the partial order \leq on X is such that $a \wedge b$ and $a \vee b$ are respectively the glb and lub of $\{a, b\}$. The algebraic operations \wedge and \vee and the partial order \leq are related by

$$a = a \wedge b \iff a \leq b \iff a \vee b = b.$$

Throughout the paper, \mathcal{Z}^+ and \mathcal{N} denote the set of positive integers and the set of non-negative integers respectively.

Definition 1 : A mapping $C : \mathbb{Z}^+ \longrightarrow \mathcal{P}(\mathbb{Z}^+)$ is called a convolution if the following are satisfied for any $n \in \mathbb{Z}^+$.

- (1) $\mathcal{C}(n)$ is a set of positive divisors of n
- (2) $n \in \mathcal{C}(n)$
- (3) $\mathcal{C}(n) = \bigcup_{m \in \mathcal{C}(n)} \mathcal{C}(m).$

Definition 2: For any convolution C and m and $n \in \mathbb{Z}^+$, we define

 $m \leq n$ if and only if $m \in \mathcal{C}(n)$

Then $\leq_{\mathcal{C}}$ is a partial order on \mathcal{Z}^+ and is called the partial order induced by \mathcal{C} on \mathcal{Z}^+ . In fact, for any mapping $\mathcal{C}: \mathcal{Z}^+ \longrightarrow \mathcal{P}(\mathcal{Z}^+)$ such that each member of $\mathcal{C}(n)$ is a divisor of $n, \leq_{\mathcal{C}}$ is a partial order on \mathcal{Z}^+ if and only if \mathcal{C} is a convolution [7], as defined above. **Definition 3** : For any subset A of \mathcal{Z}^+ and for any prime number p, let

$$A^p = \{ \theta(n)(p) \mid n \in A \}$$

Then A^p is a subset of N for each $p \in P$.

We have the following two theorems on filters in (\mathcal{Z}^+, \leq_C) and (\mathcal{N}, \leq_C^p) .

Theorem 1: Let *F* be a filter of (\mathcal{Z}^+, \leq_C) . Then F^p is a filter of (\mathcal{N}, \leq_C^p) for each $p \in P$ and $F = \{ n \in \mathcal{Z}^+ \mid \theta(n)(p) \in F^p \text{ for all } p \in P \}$ [3].

Theorem 2: Let F be the set of all filters of (\mathcal{Z}^+, \leq_C) and F^p be that of (\mathcal{N}, \leq_C^p) for each $p \in P$. Let

$$\sum_{p \in P} \mathcal{F}^p = \{ f : P \longrightarrow \bigcup_{p \in P} \mathcal{F}^p \text{ and } f(p) = \mathcal{N} \text{ for all but finite number of } p's \}$$

Then $\sum_{p \in P} \mathcal{F}^p$ is a partially ordered set with respect to the partial order defined by

 $f \leq g$ if and only if $f(p) \subseteq g(p)$ for all $p \in P$

and \mathcal{F} is order isomorphic with $\sum_{p \in P} \mathcal{F}^p$ [3].

3. Prime Filters in (\mathcal{Z}^+, \leq_C)

Definition 4 : Let (S, \wedge) be a meet semi lattice. A proper filter F of S is called a **prime filter** if, for any a and b in S,

$$a \lor b$$
 exists in S and $a \lor b \in F \implies a \in F$ or $b \in F$.

Note that the concept of prime filter is not just the dual of a prime ideal in a meet semi lattice. Recall that a proper ideal I is prime if and only if, for any ideals J and K,

$$J \cap K \subseteq I \implies J \subseteq I \text{ or } K \subseteq I.$$

However, we have the following.

Theorem 3: Let F be a proper filter of a meet semi lattice (S, \wedge) satisfying the property that, for any filters G and H of S,

$$G \cap H \subseteq F \implies G \subseteq F \text{ or } H \subseteq F.$$

Then F is a prime filter.

Proof : Let a and $b \in S$ such that $a \lor b$ exists and $a \lor b \in F$. Then, consider the principal filters [a] and [b]. We have

$$[a) \cap [b) = [a \lor b) \subseteq F.$$

and, from the hypothesis, $[a) \subseteq F$ or $[b) \subseteq F$ so that $a \in F$ or $b \in F$.

Thus F is a prime filter.

The converse of the above theorem is not true in general. For, consider the following. **Example 1** : Consider the semi lattice (S, \wedge) whose Hasse diagram is given below.

Let $F = [x] = \{x\}$. If a and $b \in S$ such that $a \lor b$ exists and $a \lor b \in F$, then $a \lor b = x$ and hence one of a and b must be x (Note that $x \lor y, y \lor z, x \lor z$ do not exist in S). Therefore F is a prime filter. But,

$$[y) \cap [z) = \emptyset \subseteq F$$
 and $[y) \nsubseteq F$ and $[z) \nsubseteq F$.

Even though the converse of theorem 3. is not true in a meet semi lattice, this is true in the case of a lattice.

Theorem 4 : Let (L, \wedge, \vee) be a lattice and F a proper filter of L. Then F is a prime filter if and only if, for any filters G and H in L,

$$G \cap H \subseteq F \implies G \subseteq F \text{ or } H \subseteq F$$

Proof : Suppose that F is a prime filter and G and H are filters of L such that $G \nsubseteq F$ and $H \nsubseteq F$. Then, we can choose elements $a \in G$ and $a \in H$ such that $a \notin F$ and $b \notin F$. Since F is prime, we have $a \lor b \notin F$.

But $a \lor b \in G$ and $a \lor b \in H$ and hence $a \lor b \in G \cap H$. Therefore $G \cap H \nsubseteq F$. The converse is proved in Theorem 3.

From the above theorem, it follows that a proper filter F of a lattice L is prime if and only if F is a prime element in the lattice of filters of L.

Definition 5: Let (S, \wedge) be a meet semi lattice with smallest element 0 and let $0 \neq x \in S$. x is said to be join-irreducible and y and $z \in S$ and $x = y \lor z \Longrightarrow x = y$ or x = z. **Theorem 5**: Let x be any element in a meet semi lattice (S, \wedge) . If [x) is a prime filter of S, then x is join-irreducible.

Proof : Suppose that x is not join-irreducible. Then there exist elements y and z such that

y < x, z < x and $y \lor z$ exists and equals to x.

Now, $y \lor z \in [x]$ and $y \notin [x]$ and $z \notin [x]$ and hence [x] is not a prime filter.

The converse of the theorem is not true, even in the case of lattices. For, consider the example given below.

Example 2 : Let (L, \wedge, \vee) be the lattice whose Hasse diagram is given below.

Here x is join-irreducible(since 0 is the only element which is strictly less than x). But $y \lor z = 1 \in [x)$ and $y \notin [x)$ and $z \notin [x)$ and hence [x) is not a prime filter.

However, in the case of distributive lattices, we have the following theorem.

Theorem 6 : Let (L, \wedge, \vee) be a distributive lattice and $x \in L$. Then [x) is a prime filter if and only if x is join-irreducible.

Proof: Note that [x) = L if and only if x is the smallest element of L. Suppose that x is join-irreducible. Then $x \neq 0$ and hence [x) is a proper filter. If $y \lor z \in [x)$, then $x \leq y \lor z$ and therefore

$$x = x \land (y \lor z) = (x \land y) \lor (x \land z).$$

Since x is join-irreducible, $x = x \land y$ or $x = x \land z$ and therefore $y \in [x)$ or $z \in [x)$. Thus [x) is a prime filter. The converse is proved in Theorem 5.

Now, we shall determine all the prime filters of the meet semi lattice (\mathcal{Z}^+, \leq_C) where C is a multiplicative convolution which is closed under finite intersections.

We have the following theorem on irreducible elements in meet semi lattice (\mathcal{Z}^+, \leq_C) .

Theorem 7: Let *C* be a multiplicative convolution such that (\mathcal{Z}^+, \leq_C) is meet semi lattice and $x \in \mathcal{Z}^+$. Then *x* is join-irreducible in (\mathcal{Z}^+, \leq_C) if and only if $x = p^a$ for some prime number *p* and a join-irreducible element *a* in (\mathcal{N}, \leq_C^p) [4] [5].

Theorem 8: Let F be a prime filter of (\mathcal{Z}^+, \leq_C) . Then $F = [p^a)$ for some prime number p and a positive integer a which is join-irreducible in (\mathcal{N}, \leq_C^p) .

Proof : By hypothesis, F is a prime filter. That is, there exists $x \in \mathbb{Z}^+$ such that F = [x]. By Theorem 5, x is join-irreducible. Also, by Theorem 7, $x = p^a$ for some prime number p and a join-irreducible element a in (\mathcal{N}, \leq_C^p) . Thus $F = [p^a)$.

The converse of the above theorem is not true, even when (\mathcal{Z}^+, \leq_C) is a lattice. For, consider the following.

Example 3 : For any prime number p and $a \in \mathcal{N}$, define

$$C(p^{a}) = \begin{cases} \{1, p^{a}\} & \text{if } a < 4\\ \{1, p, p^{2}, \cdots, p^{a}\} & \text{if } a \ge 4 \end{cases}$$

and extend C to \mathcal{Z}^+ multiplicatively; that is

$$C(\prod_{i=1}^{r} p_i^{a_i}) = \prod_{i=1}^{r} C(p_i^{a_i})$$

for any distinct primes p_1, p_2, \dots, p_r and $a_1, a_2, \dots, a_r \in \mathcal{N}$ Then C is a multiplicative convolution such that (\mathcal{Z}^+, \leq_C) is a lattice. The Hasse diagram for (\mathcal{N}, \leq_C^p) is given below, for any prime number p.

Clearly 1 is join-irreducible in (\mathcal{N}, \leq_C^2) . But $[2^1)$ is not a prime filter, since $2^2 \vee 2^3 = 2^4 \in [2^1)$, $2^2 \notin [2^1)$ and $2^3 \notin [2^1)$

However, we have the following

Theorem 9: Suppose that (\mathcal{Z}^+, \leq_C) is a distributive lattice and F a filter of (\mathcal{Z}^+, \leq_C) . Then F is a prime filter if and only if $F = [p^a)$ where p is a prime number and a is join irreducible in (\mathcal{N}, \leq_C^p) .

Proof : This follows from Theorem 6 and Theorem 7.

In the following we get another characterization of prime filters of

 (\mathcal{Z}^+, \leq_C) in terms of those of (\mathcal{N}, \leq_C^p) .

For any filter F of (\mathcal{Z}^+, \leq_C) and for any $p \in P$, we define

 $F^p = \{ \theta(n)(p) \mid n \in F \}$

where $\theta(n)(p)$ is the largest $a \in \mathcal{N}$ such that p^a divides n

Theorem 10: A filter (\mathcal{Z}^+, \leq_C) is prime if and only if there exists unique $p \in P$ such that F^p is a prime filter of (\mathcal{N}, \leq_C^p) and $F^q = \mathcal{N}$ for all $q \neq p$ in P and, in this case,

$$F = \{ n \in \mathcal{Z}^+ \mid \theta(n)(p) \in F^p \}.$$

Proof : Suppose that F is a prime filter of (\mathcal{Z}^+, \leq_C) . Then, by Theorem 8, $F = [p^a)$ for some $p \in P$ and for some $a \in \mathcal{N}$. For this p, we prove that F^p is a prime filter of (\mathcal{N}, \leq_C^p) . Also,

$$F^{p} = \{ \theta(n)(p) \mid n \in F \}$$

= $\{ \theta(n)(p) \mid p^{a} \leq_{C} n \}$
= $\{ b \in \mathcal{N} \mid a \leq_{C}^{p} b \} = [a) \text{ in } (\mathcal{N}, \leq_{C}^{p})$

Since a > 0, [a) and hence F^p is a proper filter of (\mathcal{N}, \leq_C^p) .

Observe that, for any $m \in \mathbb{Z}^+$ such that p does not divide m, we have $p^a \wedge m = 1$ and, since $p^a \in F$ and F is a proper filter of (\mathbb{Z}^+, \leq_C) , we get that $m \notin F$. Let b and $c \in \mathcal{N}$ such that $b \vee c$ exists in (\mathcal{N}, \leq_C^p) and $b \vee c \in F^p = [a]$. Then $b \vee c = \theta(n)(p)$ for some $n \in F$. Let us write $n = p^{b \vee c} \cdot m$, where $m \in \mathbb{Z}^+$ such that (p, m) = 1. Since $b \vee c$ exists in (\mathcal{N}, \leq_C^p) , it follows that $p^b \vee p^c$ exists in (\mathbb{Z}^+, \leq_C) and is equal to $p^{b \vee c}$. Also, since $(p, m) = 1, (p^{b \vee c}, m)$ is also 1 and hence $p^{b \vee c} \cdot m = n$. Therefore

$$p^b \vee p^c \vee m = n \in F$$

Since (p,m) = 1, p does not divide m and hence $m \notin F$. Since F is prime, $p^b \in F$ or $p^c \in F$ and therefore $b \in F^p$ or $c \in F^p$. Thus F^p is prime. Also, for any $p \neq q \in P$,

$$b \in \mathcal{N} \implies p^a \leq_C p^a \cdot q^b$$
$$\implies p^a \cdot q^b \in [p^a) = F$$
$$\implies b = \theta(p^a \cdot q^b)(q) \in F^q$$

and hence $F^q = N$ for all $p \neq q \in P$. The uniqueness of p is trivial. Further, by Theorem 1,

$$F = \{ n \in \mathcal{Z}^+ \mid \theta(n)(q) \in F^q \text{ for all } q \in P \} = \{ n \in \mathcal{Z}^+ \mid \theta(n)(p) \in F^p \}$$

since $F^q = N$ for all $q \neq p$.

Conversely suppose that there exists $p \in P$ such that F^p is a prime filter of (\mathcal{N}, \leq_C^p) and $F^q = N$ for all $p \neq q \in N$. Let m and $n \in \mathcal{Z}^+$ such that $m \lor n$ exists in (\mathcal{Z}^+, \leq_C) and $m \lor n \in F$. Then $\theta(m)(p) \lor \theta(n)(p)$ exists in (\mathcal{N}, \leq_C^p) and is equal to $\theta(m \lor n)(p) \in F^p$. Since F^p is a prime filter, either $\theta(m)(p) \in F$ or $\theta(n)(p) \in F$. Since $F^q = N$ for all $q \neq p \in N$, we get that

$$\theta(m)(q) \in F^q \text{ for all } q \in P$$

or $\theta(n)(q) \in F^q$ for all $q \in P$.

Since $F = \{k \in \mathbb{Z}^+ \mid \theta(k)(q) \in F^q \text{ for all } q \in P \}$, by Theorem 1, we have $m \in F$ or $n \in F$. Thus F is a prime filter of (\mathbb{Z}^+, \leq_C) .

Theorem 11 : Let (S, \wedge) be any meet semi lattice. Then every proper filter of (S, \wedge) is prime if and only if, for any x and y in S,

 $x \lor y$ exists in $S \Leftrightarrow x$ and y are comparable.

Proof : Suppose that every proper filter of (S, \wedge) is prime. Let x and $y \in S$. If x and y are comparable, then clearly $x \vee y$ exists in S. On the other hand, suppose $x \vee y$ exists and $x \vee y = z$. If [z] = S, then x and $y \in [z]$ and hence x = z = y. If $[z] \neq S$, then by hypothesis, [z] is a prime filter and $x \vee y \in [z]$ and hence $x \in [z]$ or $y \in [z]$ so that x = z or y = z. Therefore $x = x \vee y$ or $y = x \vee y$, which imply that x and y are comparable. The converse is trivial.

References

- Cohen E., Arithmetical functions associated with the unitary divisors of an integer. Math. Z., 74 (1960), 66-80.
- [2] Narkiewicz W., On a class of arithmetical convolutions. Collow. Math., 10 (1963), 81-94.
- [3] Sankar Sagi, Filters in (\mathcal{Z}^+, \leq_C) and (\mathcal{N}, \leq_C^p) . Journal of Algebra, Number Theory : Advances and Applications, 11(2 (2014), 93-102.
- [4] Sankar Sagi, Irreducible elementsin (Z^+, \leq_C) . International Journal of Mathematics and its Applicategions, 3(4-C) (2015), 17-20.
- [5] Sankar Sagi, Lattice Theory of Convolutions, Ph.D. Thesis, Andhra University, Waltair, Visakhapatnam, India. (2010).
- [5] Swamy U. M., Rao G. C., Sita Ramaiah V., On a conjecture in a ring of arithmetic functions. Indian J. Pure Appl. Math., 14(12) (1983).
- [6] Swamy U. M., Sankar Sagi, Partial orders induced by convolutions. International journal of Mathematics and Soft Computing, 2(1) (2012), 25-33.