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Abstract
The closed form expressions of stress-intensity factors and of crack shape are ob-
tained by using Fourier transform method for a ring shaped crack in an isotropic
solid.

1. Introduction

Civil engineers use circular pillars in the constructions of bridges. These pillars are

made by iron frame and concrete with cement. The continuous use of bridges, the iron

frame which is circular in shape leave the matrix (made of concrete and cement).

This causes discontinuity in the medium. The shape of discontinuity is in ring shape.

The height and radius of the of the pillar are large in comparison to radius or width

of ring shaped discontinuity. Therefore it is considered as infinite three dimensional

isotropic solid with ring shaped discontinuity whose axis coincides with z-axis.
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Linear fracture mechanics has established itself as highly satisfory working tool in study-

ing the phenomenon of brittle fracture and crack propagation in solid structures. The

technique appear to be more effective when plane-strain conditions prevail.

The crack problems in shell’s type solid structure or crack discontinuity in shell shape

in solids poses limitation. Two major limitations arise from geometry and material

behavior. The geometrical factors include the relative size of the crack with respect to

radius of curvature of shells and orientation of crack. So far as material properties are

concerned we take up isotropic homogeneous solid having shell-type discontinuity.

Erdogan and Ratwani [2] calculated the stresses causing fatigue and fracture of isotropic

cylindrical shell containing circumferential crack by using numerical method. Erdogan

[3] extended above method to orthotropic cylindrical shell having axial crack. Ma et. al

[9] obtained stress-intensity factors for axial cracks in hollow isotropic cylindrical shell

by using finite-element technique.

Liu et. al [8] analysed the crack closure effect on stress-intensity factors for circumfer-

entially cracked cylindrical shell. Lal et. al [6] and Lal [7] has discussed thermoelastic

problem with penny-shaped crack reducing the problem to Abel integral equation.

Jaunky et.al [5] discussed the mechanical response of laminated composite cylindrical

panel in axial compression by using shell theories.

The problem in present research endeavour is of ring shaped crack having axis parallel to

z-axis. The infinite 3-D isotropic body is now considered as cylinder of infinite radius and

axis as z-axis. The ring shaped crack occupies the space r = d, 0 ≤ |z| < c, 0 ≤ θ ≤ 2π

see figure-1.

The crack is formed by hydro-static force acting in medium and it is such that the

crosssections obtained by θ = α are same. It reduces the 3-dimensional problem to 2-

dimensional i.e. r and z only two variables. We take cross-section by θ = 0 and θ = π,

see figure 2a. It is being assumed that σθθ = 0 and the operator ∂
∂θ is null operator.

Thus the co-ordinates of any point will be r and z when cylindrical co-ordinate system

is taken.

Thus the physical problem is reduced to the following mixed-boundary value problem.

σrr(d, z) = −p(z), 0 ≤ |z| < c, ur(d, z) = 0, c ≤ |z| <∞, (1)− (2)

σrz(d, z) = 0, 0 ≤ |z| <∞, (3)
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and all physical quantities, i.e., the components of stress and of displacement are zero

as r, z ⇒∞.

We checked throughout that

ur(d, z) > 0, 0 ≤ |z| < c (4)

which means that crack really opens out and the faces of crack do not meet each other

other than at crack tips, see Burniston [1].

The symmetry of geometry and of loading reduce the boundary and mixed-boundary

conditions (1)-(3) to, see figure 2b

σrr(d, z) = −p(z), 0 ≤ z < c, ur(d, z) = 0, c ≤ z <∞ (5)− (6)

σrz(d, z) = 0, 0 ≤ z <∞. (7)

The plan of the paper is as follows : Section 1 introduces the problem and reduces to

mixed-boundary value problem. Section-2 formulates the mixed-boundary value prob-

lem and reduces to dual integral equation. Section-3 solves the dual integral equation

and reduces to Fredholm integral equation of second kind. Section-4 solves the Fred-

holm integral equation. Physical quantities are given in Section-5. This section takes

one special case of loading, too.

2. Formulation and Reduction to the Dual integral equation

The equations of equilibrium, after using stress-strain equations, are reduced to fourth

order partial differential equation in ur as :

∆2(∆2, ur(r, z)) = 0, ∆2 =
1
r

∂

∂r
r
∂

∂r
+

∂2

∂z2
(8)

and the other displacement component uz is related with ur in the following manner

uz(r, z) =
1
P

[
(λ+ 2µ)

∫ 〈
ur
r

+
∂ur
∂r

〉
dz +

∫
∂ur
dz

]
(9)

where λ and µ are Lame’s constants. We assume the solution of (8) as

ur(r, z) =
∫ ∞

0
cos(sz)[A(s)I1(sr) + rB(s)I0(sr)]ds. (10)
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Then

uz(r, z) = − 1
P

∫ ∞
0

sin(sz)
[
QA(s)I0(sr) +B(s){(2 + rs)I1(sr) +

(2− rs)
rs

I0(sr)
]
ds

(11)

Where P = λ + µ,Q = 1 + µ + P and I0(sr), I1(sr) are modified Bessel’s functions of

kind first with order zero and one. The use of stress-strain relations and (10)-(11) we

get

σrr(r, z) =
∫ ∞

0
s cos(sz)

[
−A(s)

{
I0(rs)α0 =

I1(sr)
sr

}
+B(s){α1I0(sr) + (sr(1 +Q) + 1)I1(sr)}] ds (12)

σrz(r, z) = − µ
P

∫ ∞
0

s sin(sz)
[
(P +Q)A(s)I1(sr) +

B(s)
s

{I0(rs)(2r2sp+ r2s2) + (rs+ 2)I1(sr)}
]
ds (13)

where A(s) and B(s) are two arbitrary constants to be determined. The quantities in

(10)-(13) vanish as z or |r| → ∞. The boundary condition (7), with (13), gives

b1A(s) = −b2B(s)
2

(14)

with

b1 = I0(ds)
[
2d2 +

d

s

]
+
s+ 2
s

I1(ds), b1 = (p+Q)I1(ds). (15)

Now, the substitution of ur and σrr from (10) and (12), respectively, and using (14) -

(15), gives ∫ ∞
0

ψ(s) cos(sz)dz = 0, c ≤ z <∞ (16)∫ ∞
0

s(ψ) cos(sz)ds = −P1(z), 0 ≤ z < c (17)

b1ψ(s) = B(s)[db1I0(ds)− b2I1(sd)] (18)

P1(z) = p(z) +
∫ ∞

0
s cos(sz)ψ(s)M(ds)ds (19)

M(sd) = (b2b4 − b1b3 − b5)/b3, b3 = (3−Q)I0(sd) + I1(sd)[1 + s(1 +Q)] (20)

b4 = I0(sd)
[
Q− P
P

+
I1(sd)
s

]
, b5 = b1dI0(sd)− b2I1(sd). (21)

Thus the problem is reduced to dual integral equation (16) - (17).
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3. Solution of Integral Equation and Expansion of Some Function

Solution of Integral Equation

The solution of dual integral equation (16) - (17) is obtained through the method of

Srivastava and Lowengrub [10].

The solution is assumed as,

πψ(s) = 2
∫ c

0
g(t)

sin st
t

dt, (22)

with no loss of generality as g(0) = 0. The use of integral

∫ ∞
0

sin st cos st
t

dt =


π/2, s > x

π/4, s = x

0, s < x

will satisfy (16) through (22).

Then using (22) in (17) and the value of integral∫ ∞
0

sin st sinxt
s

ds =
1
2

log
∣∣∣∣ t+ x

t− x

∣∣∣∣
will give

g(t) = − 2t
π2
√
c2 − t2

[
∆0(t) +

∫ c

0
g(α)M1(α, t)dx

]
, 0 ≤ t < c (23)

M1(α, t) =
∫ c

0

√
c2 − z2

z2 − t2
K1(α, z)dz, ∆0(t) =

∫ c

0

√
c2 − z2

z2 − t2
p(z)dz (24)− (25)

K1(α, z) =
∫ ∞

0
M(sd) cos(sz) sin(sα)ds. (26)

M(sd) is define in (20).

4. Expansion of Some Functions

We make use of expansion of modified Bessel’s function Iv(z) of order v. In this case

v = 0 and v = 1.

Iv(z) = e−z
d−i∑
m=0

(v,m)(−1)m
(z

2

)m
, (v,m) =

√
v +m+

1
2
/m!

√
v +

m

2
(27)

see [4]. It is real part of Iv(z).
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To get the approximate expansion of M(sd) it is needed

b2b4 − b1b3 = e−sd
n−1∑
m=0

n−1∑
r=0

(−1)m+r

(
sd

2

)m+r

e1(m, r, d)

with

θ1(m, r, s) =

√
m+

1
2

√
r +

1
2
e11(m, r, s)

e11(m, r, s) =
(
r +

1
2

)
d4 + d5

(
r +

1
2

)(
m+

1
2

)
d6

b5 =
n−1∑
r=0

n−1∑
m=0

(−1)m+r

(
sd

2

)m+r
[
d7

√
m+

1
2

√
r +

3
2

+ d6

√
m+

3
2

√
r +

3
2

]

b−1
5 =

π

4

∞∑
e=0

(2d7 − d8)−1

[
sd

4

(
2d7 − 3d8

2d7 − d8

)e]

M(sd) = π
∞∑
R=0

∞∑
l=0

l∑
p=0

n−1∑
m=0

n−1∑
r=0

(−1)m+r+p+le2(m, r, d)

(
αd

2

)m+r+l−2p−2k
lCp

 p

k

 (d1s− 2)k (28)

where d1 ∼ d8 alongwith other variables are given in appendix-I.

4. SOolution of Fredholm Integral Equation

To solve Fredholm integral equation given in (23), we expand the function g(t) in terms

of ‘d’ i.e. distance of ring shaped crack from z-axis.

g(t) =
∞∑
r=0

gr(t)d−r (29)

and then substitute (29) in (23) and compare the coefficients of {d−m} from both sides.

Before we proceed for above analysis we take appropriate values of k, l, p,m, r so that

in the expansion of M(sd) we retain upto d−5 only. Then from (28)

M(sd) =
2

3P

[
t6
d2s

+
1

d4s2

〈
t1 +

2
√
π

3

〉
+

1
d6s3

〈
2
√
p

3
t7 +

4π
9
t6 − t2

〉][
1 +

P +Q

2Pd
+
√
π

Pd2

]
.
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This M(sd) gives K1(α, z) from (26), after evaluating integrals, as

K1(α, t) =
1
d2

[
t8 +

t0
d

+
t10

d3

]
T (α, t) (30)

T (α, t) =
1
2

[
α log

∣∣∣∣α+ t

α− t

∣∣∣∣+ t2 log |α2 − t2| − |α− t|
]
, 0 ≤ α, t < c (31)

where ti, i = 1, 2, · · · , 10 are given in Appendix-II. Evaluate M1(α, t) from (24) after

using (30) and evaluating integrals which is given as,

M1(α, t) =
(
t8

d2
+
t9
d3

+
t10

d5

)
T (α, t) (32)

T (α, t) =
π

2
(α2 − 3t2)α2 +

πα

2
I2(t)

I2(t) = −c+
√
c2 − t2

2
I21(t), I21(t) = log

∣∣∣∣∣c+
√
c2 + t2

c−
√
c2 − t2

∣∣∣∣∣ . (33)

Now we use (29) in (23) and relevant function there in and compare coefficients of

{d−m}, m = 0, 1, 2, 3, 4, 5 only. There

g0(t) = − 2
π2
ψ0(t)H0(t), g1(t) = 0, ψ0(t) =

t√
c2 − t2

, 0 ≤ t < c

g2(t) =
4t8
π
ψ0(t)

[
−d0I2(t) +

π

12

〈
T5(t)− 3t2I3(t)− π2

4

〉]
d0 =

∫ ∞
0

H0(t)I21(t)dt

T2n+1(t) =
∫ ∞

0

α2n+1

√
c2 − α2(α2 − t2)

= −P2n−1 + t2T2n−1(t)

P2n+1 =
(n!)2c2n+1

22n+2(4n+ 1)!
, T1(t) =

2√
c2 + t2

I21(t)

g3(t) = 0

g4(t) =
2

3π2
ψ0(t)t24[q14 − t2q15 − q16I2(t)]

g5(t) = −34t28
π2

ψ0(t)[q17 + t2q18 − I21(t)I22(t)]

I22(t) = d0t10

√
c2 − t2 +

5πt4

6
√
c2 − t2

+ t9q1b

where qi, i = 0, 1, 2, · · · , 25 are given.
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Appendix III. These are constants depending upon elastic properties and geometrical

parameters d and c. Thus substituting gi(t), i = 0, 1, 2, · · · , 5 in (29) from above

g(t) = − 2
π2
ψ0(t)

[
H0(t) +

H1(t)
d2

〈
q23 +

t4q24

d2
+

1
a3
{I21(t) + I29(t)}

〉]
(34)

I23(t) = 6q22c
2 − 6t2q3 + t4q25 +

t8
d
I2(t). (35)

5. Physical Quantities in General and a Special Loading

The crack opening displacement and normal stress-component are quantities which are

important in fracture design parameters.

Crack Opening Displacement

The crack opening displacement is the value of integral in (16) for z in [0, c). Now using

(22) in (16) and evaluating the integral we get

ur(d, z) =
∫ c

z
g(t)dt, 0 ≤ z < c, (36)

where g(t) is to be taken from (34).

Stress Components

The component of shear stress at r = d is assumed to be zero for all z.

Normal Stress

The normal stress component is obtained from (17) for z in (c,∞) after taking second

term on left hand side and is given as

σrr(d, z) =
1
π
ψ0(z)

[
H0(z) +

1
d2

〈
q23 +

z4q24

d2
+

1
d3
{I21(z) + I23(z)}

〉]

−
∫ c

0
g(p)m2(p, z)dp, c < z <∞ (37)

m2(p, z) =
∫∞
0 M(ds)]cos(sz) sin(ds)ds.

It possesses Cauchy type singularly at crack tip (d, c).

Stress Intensity Factor

The stress-intensity factors at crack tips are defined as

(Kc, Nc) = lim
c→e−

√
z − c(σrr(d, z), σrz(d, z)). (38)
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But Nc = 0. Using (37) in (38) and evaluating the limit Kc is given as :

Kc =
1
π

√
c

2

[
H0(c) +

1
d2
H1(c)

]
, (39)

H1(c) = q23 +
c4q24

d2
+

1
d3
{I21(c) + I23(c)}.

Special Case of Loading

We consider that crack was opened by constant and uniform force at crack faces, there-

fore,

p(z) = p0 = constant (40)

Thus

H +0 (t) = p0
π

2
= constant. (41)

Substituting (41) in (34) and evaluating integrals

ur(d, z) =
P0

π

√
c2 − z2

[
1 +

1
d2

{
q23 +

q24c
4

d2
+

1
d3

〈√
c2 − z2

c
log

∣∣∣∣∣ c+
√
c2 − z2

c−
√
c32− z2

∣∣∣∣∣
−2
(
c−

√
c2 − z2 + (3c2q22 + 3c2q23) +

(
1− 1c2 − z2

3c2

))〉}]
, 0 ≤ z < c. (42)

Thus, he closed form expressions for crack opening displacement and of stress-intensity

factor kc are obtained and given by (42) and (39), respectively.
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Appendix-I

d1 = d2(2p+ s), d2 =
s+ 2
s

, d3 = 14s(1 +Q), d4 =
d1

s
+
Q− P
P

d2 − (P +Q)(3−Q)

d5 =
d1(Q− P )

P
, d6 =

d2

s
− (P +Q)d3, d7 = P +Q+ d1, d8 = d2

e2(m, r, s) = e21(m, r, s)

√
m+

1
2

√
r +

1
2

e21(m, r, s) = e11(m, r, s)−
√
r +

1
2

(d7) + d8

(
m+

1
2

)(
r +

1
2

)
.
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Appendix - II

t1 = [2(1 +Q)
√
π − 3]/4, 2t2 =

√
π − 6Q, t3 = t2, t4 = 2(P +

√
π − 2/P ),

t5 = (4Q− 7P )/4P, t6 = t4t5 + 3(1 +Q)P,

t7 =
√
π(t4 + 8t5)/2− t1, t8 = 2[t7 + 2

√
π/3]/3P, t9 = (P +Q)t10/

√
π, t10 =

√
πt8/p.

Appendix - III

(q0, q1) =
∫ c

0
ψ0(α)α2IO2(α)(α2, 1)dα, (q2, q3) =

∫ c

0
ψ0(α)α2T5(α)(α2, 1)dα

(q4, q5) =
∫ c

0
ψ0(α)T3(α)α4(α2, 1)dα, q6 = π4(P5 − 3e2P1)/576, q10 =

πc2

4

(q7, q8, q9) =
∫ c

0
αψ0(α)(I0(α),  L2t3(α))dα

q14 =
πq0d0

12
+

π2

144
(q2 − 3q4)− π4

576
P5 +

π

2

[
d0q7 +

π

12
q8 −

π

4
q9 −

π

96
P3

]
q15 =

ψ

4

[
d0q1 −

π

12
q3 −

π

4
q5 −

π

48
P3

]
, q16 = d0q11 +

π

2

[
q12 −

π

6
q13 −

π2

24
q10

]
q17 = t9(q14 + cq16)−

(
cd0 +

π2

4
− π

12
P3

)
t10, q18 =

π

12

(
1− π

2

)
P1 − t9t15

q19 = −
[
2d0ct8 +

π3

48
t8 −

π

12
P3

]
, q20 =

π

12
t8

[
q0d0 +

π

2
(q2 − 3q3)

]
q21 = −π

3
P1, q22 = −2d0t0, q23 = q19 +

q20

d2
− πt8q1

d3
, I0(x) = (c2 − 2x2)

π

2
q24 = q21 −

πq1d0d8

12d2
− 8t8q1

d3
, q25 = (6 + π)t8.
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