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Abstract
One of the main tasks of mathematical Statistics is the estimate of the unknown
parameters in statistical models. In this paper we have described some methods for
the estimate of the parameters.
Real data previously analyzed with different methods have already been analyzed
by other methods as well as contemporary classics.
Special attention is paid to the selection of the method for the estimate of the
parameters for some specific distribution.
Distribution of estimates interval are taken specific connection, like the discrete
type, binomial distribution and the continual type with normal distribution.
During the work with these problems are taken classic examples with detailed ex-
planations about these distribution methods.
The study reveals that the Bernoulli estimation and least squares methods are
highly competitive with the maximum likelihood method and product estimating
methods in small and large samples. Also each example is executed in R, to make
the estimate of parameters with different distribution, where was taken algorithm
for generating numbers distributions.
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1. Introduction

With a point estimate θ̂ of the parameter θ, we take the estimated value of the param-

eter, and that this approximation depends on the volume of the sample. So we need to

find |θ − θ̂|, so that this value should be as small as possible.

Let be M -sample (model) with volume n,X-a random variable.

Let be p(x, θ)-the rule of the density for X, where θ-parameter. In the general case,

when X have m-parameters, then receives p(x, θ1, θ2, · · · , θm).

When need to apply a point evaluation θ̂ of the parameter θ, than θ̂ should be unbiased.

Let be α ∈ (0, 1) such that

p(θ1 < θ < θ2) = 1− α = γ. (∗)

Exactly, the interval Iθ = (θ1, θ2) called a confidence interval for θ, α-called Level of

importance, while γ = 1 called level of confidence (coefficient of confidence).

Usually, for α are used small values (for example α = 0.1;α = 0.05;α = 0.01). So,

if α = 0.05, for Ip the parameter of θ belongs Ip in 95% of the empirical possibilities

(because, γ = 1−α = 0.95) therefore, 5% does not belong to the interval Ip. We called

|Ip| = |θ2 − θ1| = 2ε-length of the interval.

ε is called assessing of the trust in an interval.

2.

2.1 Statistical Approximations for Assessing in an Interval

Suppose that population has characteristic X ≈ N(µ, σ). Let be M -sample (model)

with volume - n. We have :

X =
1
n

n∑
i=1

Xi, S
2 =

1
n

n∑
i=1

(Xi −X)2, S̃2 =
1

n− 1

n∑
i=1

(Xi −X)2 and

S2 =
1
n

n∑
i=1

(Xi − µ)2

(n− 1)S̃2 = nS
2
, m(X) = µ, m(S̃2) = σ2, m(S2) =

n− 1
n

σ2.

Respectively the realized values are:

x =
1
n

n∑
i=1

xi, s2 =
1
n

n∑
i=1

(xi − x)2.
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Theorem 1 :

(i) nS2

σ2 ∼ χ2(n);

(ii) nS
2

σ2 ∼ χ2(n− 1);

(iii) (n−1)S̃2

σ2 ∼ χ2(n− 1).

Proof : (i) By that
nS2

σ2
=

n∑
i=1

(
Xi − µ
σ

)2

.

And since Xi ≈ N(0, 1) and X2
i ≈ χ2(1), from the other side

Dk ∼ χ2(nk)⇒
n∑
i=1

Xk ∼ χ2(n1 + n2 + · · ·+ nm),

than,
n∑
i=1

(
Xi − µ
σ

)2

∼ χ2(1) + · · ·+ χ2(1) ∼ χ2(n)

therefore:
nS2

σ2
∼ χ2(n).

(ii) µ-unknown. Deals relevant assessment on point (unbiased) : µ̂ = X. Than :

S
2 =

1
n

n∑
i=1

(Xi −X)2 =
1
n

n∑
i=1

[(Xi − µ)− (X − µ)]2 = S2 − (X − µ)2

therefore

S2 = S
2 + (X − µ)2.

If we say:

U =
nS2

σ2
, ‘ V =

nS
2

σ2
, W =

(
X − µ

σ√
n

)
.

Then, is U = V +W . From (i) we see that U ∼ χ2(n),W ≈ χ2(1).

Since gij(t) = (1− 2t)−
n
2 , and gW (t) = (1− 2t)−

1
2 (n = 1) then:

gU (t) = gV+W (t) = gV (t) · gW (t)‘ (from funksion g).

Therefore: V ∼ χ2(n− 1). So, nS
2

σ2 ∼ χ2(n− 1).
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(iii) Now is evidently that :

(n− 1)S̃2

σ2
=
nS

2

σ2
∼ χ2(n− 1) from (ii)).

2.2 Specific Interval Estimates

Ip interval for B(n, p) : If n-the numbers of the recurring test, and m-the number of

the realization of events A(m ≤ n), then, for X ∼ B(n, p) we know that:

p∗ = p(X = m) =

 n

m

 pn(1− p)n−m

where: p̂ = m
n is a point estimate. (X-the number of the realization of the event of A

in n-tests.

From the theorem of Laplace, for a grate n-we have:

T =
X − np
√
npq

∼ N(0, 1) (p+ q = 1).

According to this we can specify the confidence interval: Ip = (p1, p2), who τ is so that

p(−τ ≤ T ≤ τ) = 2Φ0(τ) = 1− α where α-level of importance. So,

−γ ≤ X − np√
np(1− p)

< τ

which is equivalent to
(X − np)2

np(1− p)
≤ τ2

and we win the inequality of p :

(n+ τ2)p2 − (2m+ τ2)p+
m2

n
≤ 0 (ku X = m)

where : m
n = p̂ i.e. : m = np̂, m2

n = np̂2, or:

(n+ τ2)p2 − (2np̂+ τ2)p+ np̂2 ≤ 0

since 1 + τ2 > 0 then exist : p1, p2 (p1 < p2) so that : p ∈ [p1, p2]. So

p1/2 =

(
np̂+ τ2

2

)
± r
√
np̂(1− p̂) + τ2

4

n+ τ2
. (1)
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Or for great n- : np̂2 + τ2

2 ≈ np̂, n+ τ2 ≈ n so, we win :

p1/2 = p̂± τ
√
p̂(1− p̂)

n
.

3. Main Results

1. Numerical example, in R code :

Find Ip for p = p(A), if A in 100 tests is realized 30 times. And the important level is

α = 0.05.

τ1′) = Φ−1
0

(
1− 0.05

2

)
= Φ−1

0 (0.475) = 1.96; p̂ =
30
100

=
3
10

= 0.30.

From (1) we have:

p1/2 =
3
10
∓ 1.96 · 6

125
= 0.30∓ 0.09408, ip = (0.20; 0.36).

The same example can be realize by using the code in R :

1-sample proportions test with continuity correction data: 30 out of 100, null probability

0.5.

X-squared = 7.29, df = 1, p-value = 0.006934

alternative hypothesis: true p is not equal to 0.5

95 percent confidence interval:

0.2021721 0.3627255

sample estimates:

p

0.36

If we say that the important level should be 90%:

In R conf.level :

> prop.test(30,100,conf.level=0.90)

1-sample proportions test with continuity correction

data: 30 out of 100, null probability 0.5

X-squared = 7.29, df = 1, p-value = 0.006934

alternative hypothesis: true p is not equal to 0.5

90 percent confidence interval:
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0.2210610 0.3467754

sample estimates:

p

0.361.
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