International J. of Pure & Engg. Mathematics (IJPEM) ISSN 2348-3881, Vol. 3 No. III (December, 2015), pp. 57-72

SOME ASPECTS OF A KIND OF PAIRWISE SEMI GENERALIZED CLOSED SETS

A. EDWARD SAMUEL¹ AND D. BALAN²

 ^{1,2} Ramanujan Research Centre,
 PG & Research Department of Mathematics, Government Arts College (Autonomous), Kumbakonam – 612002, Tamil Nadu, India
 E-mail: ¹ aedward74_thrc@yahoo.co.in, ² dh.balan@yahoo.com

Abstract

The aim of this paper is to introduce a new class of sets, called ij - semi (δ, θ) -open sets and study some of it's properties. Using these sets, we shall also define the notion of generalized $ij - s \wedge_{\delta}^{\theta}$ sets. The major properties of this new concept will be studied. Finally, we introduce, a new form of generalized closed sets called $ij - (\delta, \theta)$ semi generalized closed sets by utilizing ij - semi (δ, θ) -closure operator. Also we introduce $ij - (\delta, \theta)$ -sg continuity, $ij - (\delta, \theta)$ -sg irresolute maps and investigates some of their fundamental properties.

1. Introduction

Throughout the present paper, (X, τ_1, τ_2) (or briefly X) always mean a bitopological space. Also i, j = 1, 2 and $i \neq j$. Let A be a subset of (X, τ_1, τ_2) . By i - int(A) and

Key Words : $ij - semi(\delta, \theta)$ -open sets, $g - ij - s \wedge_{\delta}^{\theta}$ sets, $ij - s \wedge_{\delta}^{\theta}$ closed sets, $ij - (\delta, \theta)$ -sg closed sets, $ij - (\delta, \theta)$ -sg continuity, $ij - (\delta, \theta)$ -sg irresoluteness.

AMS Subject Classification : 54A10, 54A25, 54D10, 54E55.

© http://www.ascent-journals.com

i-cl(A), we mean respectively the interior and the closure of A in the topological space (X, τ_i) for i = 1, 2. A subset A of X is called[8] ij - regular open (resp. ij - semi open) if A = i - int[j - cl(A)] (resp. $A \subseteq j - cl[i - int(A)]$). A point x of X is called an $ij - \delta$ - cluster point of A if $i - int(j - cl(U)) \cap A \neq \phi$ for every τ_i - open set U containing x. The set of all $ij - \delta$ - cluster points of A is called the $ij - \delta$ - closure of A and is denoted by $ij - \delta cl(A)$.

In this paper, we introduce a new class of sets, called ij - semi (δ, θ) -open sets and study some of it's properties. Using these sets, we shall also define the notion of generalized ij $s \wedge_{\delta}^{\theta}$ set. The major properties of this new concept will be studied. Finally, we introduce a new form of generalized closed sets called $ij - (\delta, \theta)$ semi generalized closed sets by utilizing ij - semi (δ, θ) -closure operator. Also we introduce $ij - (\delta, \theta)$ -sg continuity, $ij - (\delta, \theta)$ -sg irresolute maps and studies some of their fundamental properties. Recall the following definitions.

Definition 1.1 [9] : A subset A is said to be $ij - \delta$ closed if $ij - \delta Cl(A) = A$. The complement of an $ij - \delta$ closed set is said to be $ij - \delta$ open. The set of all $ij - \delta$ open (resp. $ij - \delta$ closed) sets of X will be denoted by $ij - \delta O(X)$ (resp. $ij - \delta C(X)$).

Definition 1.2 [4] : A subset A of a bitopological spaces (X, τ_1, τ_2) is called $ij - \delta$ semi open if there exists a $ij - \delta$ open set U of X such that $U \subseteq A \subseteq j - cl(U)$. The set of all $ij - \delta$ semi open (resp. $ij - \delta$ semi closed) sets of X will be denoted by $ij - \delta SO(X)$ (resp. $ij - \delta SC(X)$).

Definition 1.3 [11] : A subset A of a bitopological spaces (X, τ_1, τ_2) is called ij semi-generalized closed set (briefly ij - sg-closed) if $ji - scl(A) \subseteq U$ whenever $A \subseteq U$ and U is ij - semi open set in X.

Definition 1.4 [4] : A bitopological space (X, τ_1, τ_2) is called $ij - \delta s - T_1$ if for each distinct points $x, y \in X$, there exist two $ij - \delta$ semi open sets U and V such that $x \in U \setminus V$ and $y \in V \setminus U$. If X is $12 - \delta s - T_1$ and $21 - \delta s - T_1$, then it is called pairwise $\delta s - T_1$ ($P - \delta s - T_1$). A bitopological space (X, τ_1, τ_2) is pairwise $\delta s - T_1$ if and only of every singleton is pairwise δ - semi closed.

Definition 1.5 [4] : A function $f : (X, \tau_1, \tau_2) \longrightarrow (Y, \sigma_1, \sigma_2)$ is said to be $ij - \delta s$ continuous, if $f^{-1}(V)$ is $ij - \delta$ semi open set in X for every σ_i - open set V in Y.

Definition 1.6 [4] : A function $f : (X, \tau_1, \tau_2) \longrightarrow (Y, \sigma_1, \sigma_2)$ is said to be $ij - \delta s$ irresolute, if $f^{-1}(V)$ is $ij - \delta$ semi open set in X for every $ij - \delta$ semi open set V in Y.

Definition 1.7 [11]: A function $f : (X, \tau_1, \tau_2) \longrightarrow (Y, \sigma_1, \sigma_2)$ is said to be ij - sg continuous, if $f^{-1}(V)$ is ij - sg closed set in X for every σ_i - open set V in Y.

2. ij - Semi (δ, θ) -Open Sets.

Definition 2.1 : A point $x \in X$ is said to be an ij - semi (δ, θ) -cluster point of A if $ji - \delta scl(U) \cap A \neq \phi$ for every $ij - \delta$ semi open set U containing x. The set of all ij - semi (δ, θ) -cluster point of A is called the ij - semi (δ, θ) -closure of A and is denoted by $ij - \delta scl_{\theta}(A)$. A subset A is called ij - semi (δ, θ) -closed if $ij - \delta scl_{\theta}(A) = A$.

The set $\{x \in X : ji - \delta scl(U) \subseteq A$, for some $ij - \delta$ semi open $U\}$ is called the ij-semi (δ, θ) -interior of A and is denoted by $ij - \delta sint_{\theta}(A)$. A subset A is called ij-semi (δ, θ) -open if $A = ij - \delta sint_{\theta}(A)$.

Theorem 2.2: Let A be a subset of a bitopological space (X, τ_1, τ_2) . Then

(i) $X \setminus ij - \delta sint_{\theta}(A) = ij - \delta scl_{\theta}(X \setminus A).$

(ii) $X \setminus ij - \delta scl_{\theta}(A) = ij - \delta sint_{\theta}(X \setminus A).$

Proof : (i) Let $x \notin ij - \delta scl_{\theta}(X \setminus A)$. Then there exists $U \in ij - \delta SO(X)$ containing x such that $ji - \delta scl(U) \cap (X \setminus A) = \phi$. Thus $x \in U \subseteq ji - \delta scl(U) \subseteq A$ and $x \in ij - \delta sint_{\theta}(A)$. Hence $x \notin X \setminus ij - \delta sint_{\theta}(A)$. Now let $x \notin X \setminus ij - \delta sint_{\theta}(A)$. Thus $x \in ij - \delta sint_{\theta}(A)$ and there exists $U \in ij - \delta SO(X)$ such that $x \in U \subseteq ji - \delta scl(U) \subseteq A$. Hence $ji - \delta scl(U) \cap (X \setminus A) = \phi$ and $x \notin ij - \delta scl_{\theta}(X \setminus A)$.

(ii) The proof is similar to that of (i).

Theorem 2.3: Let A be a subset of a bitopological space (X, τ_1, τ_2) . If A is $ij - \delta$ semi open, then $ji - \delta scl(A) = ji - \delta scl_{\theta}(A)$.

Definition 2.4 : A subset A of a bitopological space (X, τ_1, τ_2) is called $ij - \delta$ semi regular if A is both $ji - \delta$ semi open and $ij - \delta$ semi closed. The set of all $ij - \delta$ semi regular subsets of a space X is denoted by $ij - \delta SR(X)$.

Theorem 2.5 : If $U \in ij - \delta SO(X)$, then $ji - \delta scl(U) \in ji - \delta SR(X)$.

Theorem 2.6 : Let A be a subset of a bitopological space (X, τ_1, τ_2) , then

(i) $ij - \delta scl_{\theta}(A)$ is ij - semi (δ, θ) -closed.

(ii) $ij - \delta scl_{\theta}(A) = \bigcap \{ ij - \delta scl(V) : A \subseteq V \in ji - \delta SO(X) \}.$

Proof: (i) We show that $ij - \delta scl_{\theta}(A) = ij - \delta scl_{\theta}[ij - \delta scl_{\theta}(A)]$, for a subset A of X. Since $A \subseteq ij - \delta scl_{\theta}(A)$, then $ij - \delta scl_{\theta}(A) \subseteq ij - \delta scl_{\theta}[ij - \delta scl_{\theta}(A)]$.

Conversely, let $x \notin ij - \delta scl_{\theta}(A)$. This means there exists $U_0 \in ij - \delta SO(X)$ containing

x such that $ji - \delta scl_{\theta}(U_0) \cap A = \phi$. Suppose that $ji - \delta scl_{\theta}(U) \cap ij - \delta scl_{\theta}(A) \neq \phi$, for every $U \in ij - \delta SO(X)$. Therefore, there exists a point $y \in X$ such that $y \in ji - \delta scl(U) \in ij - \delta scl_{\theta}(A)$. On the other hand, $y \in ij - \delta scl_{\theta}(A)$ for any $V \in ij - \delta SO(X)$ containing y, we have $ji - \delta scl(V) \cap A \neq \phi$. Since $y \in ji - \delta scl(U)$ and by theorem 2.5, $ji - \delta scl(U)$ is $ij - \delta$ semi open, then $ji - \delta scl(U) \cap A \neq \phi$. But this is a contradiction, since $x \notin ij - \delta scl_{\theta}(A)$. Thus $x \notin ij - \delta scl_{\theta}[ij - \delta scl_{\theta}(A)]$. This implies $ij - \delta scl_{\theta}(A) = ij - \delta scl_{\theta}[ij - \delta scl_{\theta}(A)]$.

(ii) By theorem 2.3, $ij - \delta scl_{\theta}(A) \subseteq \bigcap \{ij - \delta scl(V) : A \subseteq V \in ji - \delta SO(X)\}.$

Conversely, let $x \notin ij - \delta scl_{\theta}(A)$ and $A \subseteq V \in ji - \delta SO(X)$. Then there exists $U \in ji - \delta SO(X)$ containing x such that $ji - \delta scl(U) \cap A \neq \phi$. Thus for each $y \in A$, we have $y \in V$, $y \notin ji - \delta scl(U)$ and so, $U \cap V = \phi$. This implies that $U \cap ij - \delta scl(V) = \phi$ and $x \notin ij - \delta scl(V)$. Hence $x \notin \bigcap\{ij - \delta scl(V) : A \subseteq V \in ji - \delta SO(X)\}$ and $\bigcap\{ij - \delta scl(V) : A \subseteq V \in ji - \delta SO(X)\} \subseteq ij - \delta scl_{\theta}(A)$. From this, we note that $ij - \delta scl_{\theta}(A)$ is $ij - \delta$ semi closed set in X.

Theorem 2.7: Let A be a subset of a bitopological space (X, τ_1, τ_2) . If $A \in ji - \delta SR(X)$, then A is both ij - semi (δ, θ) -closed and ji - semi (δ, θ) -open.

Proof: Let $A \in ij - \delta SR(X)$, then $A \in ji - \delta SO(X)$ and $A \in ij - \delta SC(X)$. If A is $ji - \delta$ semi open set of X, then by theorem 2.5, $ij - \delta scl(A) \in ij - \delta SR(X)$. Thus $ij - \delta scl(A)$ is $ji - \delta$ semi open set of X and hence by theorem 2.3, $A = ij - \delta scl(A) = ij - \delta scl_{\theta}(A)$. This implies that A is ij - semi (δ, θ)-closed. Therefore, if A is $ij - \delta$ semi closed, then $X \setminus A$ is $ij - \delta$ semi open set of X. Similar $X \setminus A$ is ji - semi (δ, θ)-closed set and A is ji - semi (δ, θ)-open set of X.

Theorem 2.8: In a bitopological space (X, τ_1, τ_2) , a singleton is an ij - semi (δ, θ) -open if and only if it is $ji - \delta$ semi regular.

Proof : Let $x \in X$ and $\{x\}$ be an ij - semi (δ, θ) -open set of X. Then by the fact that a set A is ij - semi (δ, θ) -open if and only if there exists $U \in ij - \delta SO(X)$ containing xsuch that $ji - \delta scl(U) \subseteq A$. Since the superset $ji - \delta$ semi closed contained in $\{x\}$ is $\{x\}$, hence $\{x\}$ is $ji - \delta$ semi regular. The converse part of the proof is follows directly from theorem 2.7.

3. Generalized $ij - s \wedge_{\delta}^{\theta}$ Sets

Definition 3.1: For a subset A of a bitopological space (X, τ_1, τ_2) , we define $A^{\delta s \wedge_{ij}}$

and $A^{\delta s \vee_{ij}}$ as follows, $A^{\delta s \wedge_{ij}} = \bigcap \{U : A \subseteq U, U \in ij - \delta SO(X)\}$ and $A^{\delta s \vee_{ij}} = \bigcup \{U : U \subseteq A, U^C \in ij - \delta SO(X)\}$.

Definition 3.2: Let A be a subset of a bitopological space (X, τ_1, τ_2) , then we define (a) $A_{\delta}^{\theta s \wedge_{ij}} = \{x \in X : ij - \delta scl_{\theta}(\{x\}) \cap A \neq \phi\}.$

(b) A is called $ij - s \wedge_{\delta}^{\theta}$ set if $A = A_{\delta}^{\theta s \wedge_{ij}}$.

(c) A is called generalized $ij - s \wedge_{\delta}^{\theta}$ set (briefly $g - ij - s \wedge_{\delta}^{\theta}$ set) if $A_{\delta}^{\theta s \wedge_{ij}} \subseteq U$ whenever $A \subseteq U$ and U is a $ji - \delta$ semi closed set of (X, τ_1, τ_2) .

Theorem 3.3: For any subset A of a bitopological space $(X, \tau_1, \tau_2), A_{\delta}^{\theta s \wedge ij} = \bigcap \{U : A \subseteq U, Uisij - semi(\delta, \theta) - open\}.$

Proof: Let $H = \bigcap \{U : A \subseteq U, Uisij - semi(\delta, \theta) - open\}$ and $x \in H$. Suppose that $x \notin A_{\delta}^{\theta s \wedge ij}$. That is $ij - \delta scl_{\theta}(\{x\}) \cap A = \phi$. Hence $x \notin X \setminus ij - \delta scl_{\theta}(\{x\})$, where $X \setminus ij - \delta scl_{\theta}(\{x\})$ is ij - semi (δ, θ) -open set containing A, by theorem 2.6. But $x \in H$. Therefore $x \in A_{\delta}^{\theta s \wedge ij}$.

Conversely, Let $x \in A_{\delta}^{\theta s \wedge ij}$. If $x \notin H$, then there exists an ij - semi (δ, θ) -open set U such that $A \subseteq U$ and $x \notin U$. Assume that $y \in ij - \delta scl_{\theta}(\{x\}) \cap A$. Thus $y \in U$ and $x \notin U$. This is contradiction. Therefore $x \in H$ and hence $x \in A_{\delta}^{\theta s \wedge ij}$.

Theorem 3.4 : Let (X, τ_1, τ_2) be a bitopological space, then

(a) For any set $A \subset X$, $A \subseteq A^{\delta s \wedge_{ij}} \subseteq A_{\delta}^{\theta s \wedge_{ij}} \subseteq ji - \delta scl_{\theta}(A)$.

(b) Every ij - semi (δ, θ) -closed is an $ji - \wedge^s_{\delta}$ set.

(c) Every $g - ij - s \wedge^{\theta}_{\delta}$ is $g - ij - \wedge^{s}_{\delta}$ set.

Proof : (a) Obviously, $A \subseteq A^{\delta s \wedge ij}$. Now we prove that $A^{\delta s \wedge ij} \subseteq A_{\delta}^{\theta s \wedge ij}$. Suppose that $x \notin A_{\delta}^{\theta s \wedge ij}$. It follows that $A \subseteq X \setminus ij - \delta scl_{\theta}(\{x\}) = U$. Since $ij - \delta scl_{\theta}(\{x\})$ is ij - semi (δ, θ) -closed by theorem 2.6, so U is ij - semi (δ, θ) -open. Hence there exists an $ij - \delta$ semi open set U containing A but not x, then $x \notin A_{\delta}^{\theta s \wedge ij}$. Thus $A^{\delta s \wedge ij} \subseteq A_{\delta}^{\theta s \wedge ij}$. To prove that $A_{\delta}^{\theta s \wedge ij} \subseteq ji - \delta scl_{\theta}(A)$, let $x \notin ji - \delta scl_{\theta}(A)$. Then there exists $U \in ij - \delta SO(X)$ containing x such that $ij - \delta scl(U) \cap A = \phi$. Since $U \in ji - \delta SO(X)$ it follows by theorem 2.3, $ij - \delta scl_{\theta}(U) \cap A = \phi$. Then $ij - \delta scl_{\theta}(\{x\}) \cap A = \phi$. Therefore $x \notin A_{\delta}^{\theta s \wedge ij}$. This shows that $A_{\delta}^{\theta s \wedge ij} \subseteq ji - \delta scl_{\theta}(A)$.

(b) Let A be an ij - semi (δ, θ) -closed set. Then $ij - \delta scl_{\theta}(A) = A$. Thus by $A^{\delta s \wedge_{ij}} \subseteq ji - \delta scl_{\theta}(A)$, $A^{\delta s \wedge_{ji}} \subseteq ij - \delta scl_{\theta}(A)$ and hence $A^{\delta s \wedge_{ji}} = A$. Thus A is a $ji - \wedge_{\delta}^{s}$.

(c) Let $A \subseteq U$ where U is $ji - \delta$ semi closed. By (i), we have $A \subseteq A^{\delta s \wedge_{ij}} \subseteq A^{\theta s \wedge_{ij}}_{\delta}$. This implies that A is a $g - ij - \wedge^s_{\delta}$ set.

Definition 3.5: For a subset A of a bitopological space (X, τ_1, τ_2) , we define $A_{\delta}^{\theta_{S} \lor_{ij}}$ as follows, $A_{\delta}^{\theta_{S} \lor_{ij}} = \bigcup \{U : U \subseteq A, U^C isij - semi(\delta, \theta) - open\}.$

Theorem 3.6: For any subsets A and B of a bitopological space (X, τ_1, τ_2) , the following are hold:

- (a) $(A^C)^{\theta s \wedge_{ij}}_{\delta} = (A^{\theta s \wedge_{ij}}_{\delta})^C.$
- (b) $A_{\delta}^{\theta s \vee_{ij}} \subseteq A$.

(c) If A is ij - semi (δ, θ) -open, then $A = A_{\delta}^{\theta s \vee_{ij}}$.

Proof. (a) By the definition, $(A_{\delta}^{\theta s \wedge_{ij}})^C = \bigcap \{ U^C : U^C \supseteq A^C, U^C isij - semi(\delta, \theta) - open \} = (A^C)_{\delta}^{\theta s \wedge_{ij}}.$

(b) Obviously. Clear by the definition.

(c) If A is ij - semi (δ, θ) -closed subset of (X, τ_1, τ_2) , then A^C is ij - semi (δ, θ) -open. By (a) and (b), we have $A^C = (A^C)^{\theta s \wedge_{ij}}_{\delta} = (A^{\theta s \wedge_{ij}}_{\delta})^C$. Therefore $A = A^{\theta s \wedge_{ij}}_{\delta}$.

Theorem 3.7: Let A and $\{A_{\alpha}, \alpha \in J\}$ be the subsets of a bitopological space (X, τ_1, τ_2) . Then the following are valid:

(a) $[\bigcup_{\alpha \in J} A_{\alpha}]_{\delta}^{\theta s \wedge ij} = \bigcup_{\alpha \in J} (A_{\alpha})_{\delta}^{\theta s \wedge ij}$. (b) $[\bigcap_{\alpha \in J} A_{\alpha}]_{\delta}^{\theta s \wedge ij} \subseteq \bigcap_{\alpha \in J} (A_{\alpha})_{\delta}^{\theta s \wedge ij}$. (c) $[\bigcup_{\alpha \in J} A_{\alpha}]_{\delta}^{\theta s \vee ij} \supseteq \bigcup_{\alpha \in J} (A_{\alpha})_{\delta}^{\theta s \vee ij}$.

Proof : (a) Suppose there exists a point x such that $x \notin [\bigcup_{\alpha \in J} A_{\alpha}]_{\delta}^{\theta s \wedge ij}$. Then there exists a ij - semi (δ, θ) -open subset U, such that $\bigcup_{\alpha \in J} A_{\alpha} \subseteq U$ and $x \notin U$. Thus for each $\alpha \in J$, we have $x \notin (A_{\alpha})_{\delta}^{\theta s \wedge ij}$. This implies that $x \notin \bigcup_{\alpha \in J} (A_{\alpha})_{\delta}^{\theta s \wedge ij}$.

Conversely, Suppose there exists a point x such that $x \notin \bigcup_{\alpha \in J} (A_{\alpha})^{\theta s \wedge_{ij}}_{\delta}$. Then by the definition, there exist ij - semi (δ, θ) -open subsets U_{α} , for each $\alpha \in J$ such that $x \notin U_{\alpha}$ and $A_{\alpha} \subseteq U_{\alpha}$. Let $U = \bigcup_{\alpha \in J} U_{\alpha}$. Then $x \notin \bigcup_{\alpha \in J} U_{\alpha}$, $\bigcup_{\alpha \in J} A_{\alpha} \subseteq U$ and U is a ij - semi (δ, θ) -open set. Thus $x \notin [\bigcup_{\alpha \in J} A_{\alpha}]^{\theta s \wedge_{ij}}_{\delta}$.

(b) Suppose there exists a point x such that $x \notin \bigcap_{\alpha \in J} (A_{\alpha})_{\delta}^{\theta s \wedge ij}$, then there exists $\alpha \in J$ such that $x \notin (A_{\alpha})_{\delta}^{\theta s \wedge ij}$. Hence there exists a ij - semi (δ, θ) -open set U such that $U \supseteq A_{\alpha}$ and $x \notin U$. Thus $x \notin [\bigcap_{\alpha \in J} A_{\alpha}]_{\delta}^{\theta s \wedge ij}$.

(c) $[\bigcup_{\alpha\in J}A_{\alpha}]^{\theta s \vee_{ij}}_{\delta} = [[(\bigcup_{\alpha\in J}A_{\alpha})^{C}]^{\theta s \vee_{ij}}_{\delta}]^{C} = [[(\bigcap_{\alpha\in J}A_{\alpha}^{C})]^{\theta s \wedge_{ij}}_{\delta}]^{C} \supseteq [\bigcap_{\alpha\in J}(A_{\alpha}^{C})^{\theta s \wedge_{ij}}_{\delta}]^{C} = [\bigcap_{\alpha\in J}(A_{\alpha})^{\theta s \vee_{ij}}_{\delta}]^{C} = [\bigcap_{\alpha\in J}(A_{\alpha})^{\theta s \vee_{ij}}_{\delta}]^{C}$, by theorem 3.5(a). By (b), we have $[\bigcup_{\alpha\in J}A_{\alpha}]^{\theta s \vee_{ij}}_{\delta} \supseteq \bigcup_{\alpha\in J}(A_{\alpha})^{\theta s \vee_{ij}}_{\delta}$

Theorem 3.8 : Let A be a subset of a bitopological space (X, τ_1, τ_2) . Then $A^{\delta s \wedge_{ij}} = (A^{\theta s \wedge_{ij}}_{\delta})^{\theta s \wedge_{ij}}_{\delta}$.

 $\begin{array}{l} \mathbf{Proof} : \ \mathrm{From \ the \ definition \ of \ } A_{\delta}^{\theta s \wedge ij}, \ \mathrm{we \ have \ } (A_{\delta}^{\theta s \wedge ij})_{\delta}^{\theta s \wedge ij} = \bigcap \{U : A_{\delta}^{\theta s \wedge ij} \subseteq U, Uisij - semi(\delta, \theta) - open\} \subseteq \bigcap \{U : (\bigcap \{V : A \subseteq V, Visij - semi(\delta, \theta) - open\}) \subseteq U, Uisij - semi(\delta, \theta) - open\} \subseteq \bigcap \{U : A \subseteq U, Uisij - semi(\delta, \theta) - open\} = A_{\delta}^{\theta s \wedge ij}. \\ \mathrm{That \ is \ } (A_{\delta}^{\theta s \wedge ij})_{\delta}^{\theta s \wedge ij} \subseteq A_{\delta}^{\theta s \wedge ij}. \ \mathrm{On \ the \ other \ hand, \ since \ } A \subseteq A_{\delta}^{\theta s \wedge ij}, \ \mathrm{for \ any \ subset \ } A, \\ A_{\delta}^{\theta s \wedge ij} \subseteq (A_{\delta}^{\theta s \wedge ij})_{\delta}^{\theta s \wedge ij}. \ \mathrm{Therefore \ } A^{\delta s \wedge ij} = (A_{\delta}^{\theta s \wedge ij})_{\delta}^{\theta s \wedge ij}. \end{array}$

Theorem 3.9: A bitopological space (X, τ_1, τ_2) is a pairwise $\delta s - T_1$ space if and only if every subset is a $ij - \wedge^s_{\delta}$ set.

Proof: Let A be a subset of a pairwise $\delta s - T_1$ space. Suppose that there exists a point $x \in X$ such that $x \notin A$. By definition 1.4, $X \setminus \{x\}$ is an $ij - \delta$ semi open set containing A. This implies $x \notin A^{\delta s \wedge_{ij}}$. Hence $A^{\delta s \wedge_{ij}} \subseteq A$ and by theorem 3.4 (a), $A \subseteq A^{\delta s \wedge_{ij}}$. Thus $A = A^{\delta s \wedge_{ij}}$.

Conversely if $x \in X$, then by hypothesis $X \setminus \{x\}$ is $ij - \wedge_{\delta}^{s}$ set. Hence $\{x\}$ is the union of $ij - \delta$ semi closed sets and thus $ij - \delta$ semi closed. This shows that X is a pairwise $\delta s - T_1$ space, by definition 1.4.

Definition 3.10 : A subset A of a bitopological space (X, τ_1, τ_2) is called $ij - s \wedge_{\delta}^{\theta}$ closed if $A = G \cap F$, where G is a $ij - s \wedge_{\delta}^{\theta}$ set and F is a ji - semi $(\delta, \theta$ -closed.

Theorem 3.11 : For a subset A of a bitopological space (X, τ_1, τ_2) the following conditions are equivalent:

- (i) A is $ij s \wedge_{\delta}^{\theta}$ closed.
- (ii) $A = G \cap ji \delta scl_{\theta}(A)$, where G is a $ij s \wedge_{\delta}^{\theta}$ set.

(iii)
$$A = A_{\delta}^{\delta S \wedge_{ij}}$$

Proof : (i) \Longrightarrow (ii) Suppose that $A = G \cap F$ where G is a $ij - s \wedge_{\delta}^{\theta}$ set and F is ji - semi (δ, θ -closed. Then $A \subseteq G$ and $A \subseteq ji - \delta scl_{\theta}(A) \subseteq F$. Now, we have $A \subseteq G \cap ji - \delta scl_{\theta}(A) \subseteq G \cap F = A$. This means that $A = G \cap ji - \delta scl_{\theta}(A)$.

(ii) \Longrightarrow (iii) Suppose that $A = G \cap ji - \delta scl_{\theta}(A)$ where G is a $ij - s \wedge_{\delta}^{\theta}$ set. We have $A \subseteq A_{\delta}^{\theta s \wedge_{ij}} \subseteq G$ and $A \subseteq ji - \delta scl_{\theta}(A)$. So $A = A_{\delta}^{\theta s \wedge_{ij}} \cap ji - \delta scl_{\theta}(A)$ and hence $A = A_{\delta}^{\theta s \wedge_{ij}}$ by theorem 3.4.

(iii) \Longrightarrow (i) By theorem 3.8, $A_{\delta}^{\theta s \wedge ij} = (A_{\delta}^{\theta s \wedge ij})_{\delta}^{\theta s \wedge ij}$ for any set A. Therefore $A_{\delta}^{\theta s \wedge ij}$ is a $ij - s \wedge_{\delta}^{\theta}$ set. Suppose that $A = A_{\delta}^{\theta s \wedge ij}$. By theorem 3.4, we have $A = A_{\delta}^{\theta s \wedge ij} \cap ji - \delta scl_{\theta}(A)$. Clearly A is the intersection of a $ij - s \wedge_{\delta}^{\theta}$ set and a ji - semi (δ, θ -closed set and hence A is $ij - s \wedge_{\delta}^{\theta}$ closed.

Definition 3.12 : A subset A of a bitopological space (X, τ_1, τ_2) is called *ij* - quasi

semi (δ, θ) -closed (briefly ij-qs (δ, θ) -closed) if $ji - \delta scl_{\theta}(A) \subseteq U$ wherever $A \subseteq U$ and U is ij - semi (δ, θ) -open in (X, τ_1, τ_2) .

Theorem 3.13: A subset A of a bitopological space (X, τ_1, τ_2) is ij-qs (δ, θ) -closed if and only if $ji - \delta scl_{\theta}(A) \subseteq A_{\delta}^{\theta s \wedge_{ij}}$.

Proof : Let $x \in X$ such that $x \notin A_{\delta}^{\theta s \wedge ij}$. So there exists an ij - semi (δ, θ) -open subset U such that $A \subseteq U$ with $x \notin U$. This means that $x \notin ji - \delta scl_{\theta}(A)$, since A is ij-qs (δ, θ) -closed. Therefore $ji - \delta scl_{\theta}(A) \subseteq A_{\delta}^{\theta s \wedge ij}$.

Conversely, let U be an ij - semi (δ, θ) -open set such that $A \subseteq U$. By assumption $A_{\delta}^{\theta s \wedge ij}$ and by theorem 3.3, then $ji - \delta scl_{\theta}(A) \subseteq U$. Thus A is ij-qs (δ, θ) -closed.

Theorem 3.14 : For a subset A of a bitopological space (X, τ_1, τ_2) the following are equivalent:

(a) A is ji - semi (δ, θ) -closed.

(b) A is ij-qs (δ, θ) -closed and $ij - s \wedge_{\delta}^{\theta}$ closed.

Proof : (a)=>(b) Let A be a subset of X such that , $A \subseteq U$ where U is ij - semi (δ, θ) open set. Since A is ji - semi (δ, θ) -closed, $A = ji - \delta scl_{\theta}(A)$. Thus $ji - \delta scl_{\theta}(A) \subseteq U$.
Hence A is ij-qs (δ, θ) -closed. Therefore, by theorem 3.4(a) and theorem 3.13, $ji - \delta scl_{\theta}(A) = A_{\delta}^{\theta s \wedge ij} = A$. Thus $A = A_{\delta}^{\theta s \wedge ij} \cap ji - \delta scl_{\theta}(A)$ and hence A is a $ij - s \wedge_{\delta}^{\theta}$ closed.

(b)=>(a) Since A is ij-qs (δ, θ) -closed, then by theorem 3.13, $ji - \delta scl_{\theta}(A) \subseteq A_{\delta}^{\theta s \wedge_{ij}}$. Thus $A = A_{\delta}^{\theta s \wedge_{ij}} \cap ji - \delta scl_{\theta}(A) = ji - \delta scl_{\theta}(A)$. Hence A is ji- semi (δ, θ) -closed.

Theorem 3.15: The following statements are equivalent for any points x and y in a bitopological space (X, τ_1, τ_2) . (i) $\{x\}_{\delta}^{\theta s \wedge ij} \neq \{y\}_{\delta}^{\theta s \wedge ij}$.

(ii) $ij - \delta scl_{\theta}(\{x\}) \neq ij - \delta scl_{\theta}(\{y\}).$

Proof: (i) \Longrightarrow (ii) Let $\{x\}_{\delta}^{\theta s \wedge ij} \neq \{y\}_{\delta}^{\theta s \wedge ij}$. Then there exists a point z in X such that $z \in \{x\}_{\delta}^{\theta s \wedge ij}$ and $z \notin \{y\}_{\delta}^{\theta s \wedge ij}$. By $z \in \{x\}_{\delta}^{\theta s \wedge ij}$ it follows that $\{x\} \cap ij - \delta scl_{\theta}(\{z\}) \neq \phi$. This implies $x \in ij - \delta scl_{\theta}(\{z\})$. By $z \notin \{y\}_{\delta}^{\theta s \wedge ij}$ we obtain $\{y\} \cap ij - \delta scl_{\theta}(\{z\}) = \phi$. Since $x \in ij - \delta scl_{\theta}(\{z\}), x \in ij - \delta scl_{\theta}(\{x\}) \subseteq ij - \delta scl_{\theta}(\{z\})$ and $\{y\} \cap ij - \delta scl_{\theta}(\{x\}) = \phi$. Hence it follows that $ij - \delta scl_{\theta}(\{x\}) \neq ij - \delta scl_{\theta}(\{y\})$.

(ii) \Longrightarrow (i) Let $ij - \delta scl_{\theta}(\{x\}) \neq ij - \delta scl_{\theta}(\{y\})$. Then there exists a point z in X such that $z \in \{x\}_{\delta}^{\theta s \wedge_{ij}}$ and $z \notin \{y\}_{\delta}^{\theta s \wedge_{ij}}$. This means that there exists an ij- semi (δ, θ) -open set containing z and therefore x but not y. Thus $y \notin \{x\}_{\delta}^{\theta s \wedge_{ij}}$. Hence $ij - \delta scl_{\theta}(\{x\}) \neq ij - \delta scl_{\theta}(\{y\})$.

Definition 3.16: A bitopological space (X, τ_1, τ_2) is a pairwise semi $(\delta, \theta) - R_0$ space if for every ij - semi (δ, θ) -open set $U, x \in U$ implies $ji - \delta scl_{\theta}(\{x\}) \subseteq U$.

Theorem 3.17 : In a bitopological space (X, τ_1, τ_2) , the following statements are equivalent:

(a) (X, τ_1, τ_2) is pairwise semi $(\delta, \theta) - R_0$. (b) For any $x \in X$, $ij - \delta scl_{\theta}(\{x\}) \subseteq \{x\}_{\delta}^{\theta s \wedge ij}$. (c) For any $x, y \in X$, $y \in \{x\}_{\delta}^{\theta s \wedge ij}$ if and only if $x \in \{y\}_{\delta}^{\theta s \wedge ji}$. (d) For any $x, y \in X$, $y \in ij - \delta scl_{\theta}(\{x\})$ if and only if $x \in ji - \delta scl_{\theta}(\{y\})$. (e) For any ij- semi (δ, θ) -closed set F and a point $x \notin F$, there exists a ji - semi (δ, θ) -open set U such that $x \notin U, F \subset U$. (f) Each *ij*- semi (δ, θ) -closed, $F = \bigcap \{U : F \subseteq U, \text{and } U \text{ is } ji \text{ - semi } (\delta, \theta) \text{-open} \}.$ (g) Each ij - semi (δ, θ) -open set, $U = \bigcup \{F : U \subseteq F, \text{and } F \text{ is } ji \text{ - semi } (\delta, \theta)\text{-closed} \}.$ (h) For each ij - semi (δ, θ) -closed set $F, x \notin F$ implies $ji - \delta scl_{\theta}(\{x\}) \cap F = \phi$. **Proof**: (a) \Longrightarrow (b) For any $x \in X$, we have by theorem 3.3, $\{x\}^{\theta s \wedge_{ij}}_{\delta} = \bigcap \{U : \{x\} \subseteq U, U\}$ is *ji*-semi (δ, θ) -open}. Since (X, τ_1, τ_2) is pairwise semi $(\delta, \theta) - R_0$, each *ji* - semi (δ, θ) open U containing x contains $ij - \delta scl_{\theta}(\{x\})$. Hence $ij - \delta scl_{\theta}(\{x\}) \subseteq \{x\}_{\delta}^{\theta s \wedge ij}$. (b) \Longrightarrow (c) For any $x, y \in X$, if $y \in \{x\}^{\theta s \wedge ij}_{\delta}$, then $x \in ij - \delta scl_{\theta}(\{y\})$. By (b), we have $x \in \{y\}_{\delta}^{\theta s \wedge ji}$. Similarly we can prove the other hand. $(\mathbf{c}) \Longrightarrow (\mathbf{d}) \text{ For any } x, y \in X, \text{ if } y \in ij - \delta scl_{\theta}(\{x\}), \text{ then } x \in \{y\}_{\delta}^{\theta s \wedge_{ij}}. \text{ By } (\mathbf{c}), y \in \{x\}_{\delta}^{\theta s \wedge_{ji}}$ and so $x \in ji - \delta scl_{\theta}(\{y\})$. Similarly we can prove the other hand. (d) \Longrightarrow (e) Let F be an ij - semi (δ, θ)-closed set and a point $x \notin F$. Then for any point $y \in F$, $ij - \delta scl_{\theta}(\{y\}) \subseteq F$ and $x \notin ij - \delta scl_{\theta}(\{y\})$. By (d), $x \notin ij - \delta scl_{\theta}(\{y\})$ implies $y \notin ji - \delta scl_{\theta}(\{x\})$. Hence there exists a ji - semi (δ, θ) -open set U_y such that $y \in U_y$

and $x \notin U_y$. Let $U = \bigcup_{y \in F} \{U_y : y \in U_y and x \notin U_y, U_y is ji - semi(\delta, \theta) - open\}$. Then U is a ji - semi (δ, θ) -open set such that $x \notin U$ and $F \subseteq U$.

(e) \Longrightarrow (f) Let F be an ij - semi (δ, θ) -closed set and suppose that $H = \bigcap \{U : F \subseteq U, isji - semi(\delta, \theta) - open\}$. Then $F \subseteq H$ and we show that $H \subseteq F$. Let $x \notin F$. Then by (e), there exists a ji - semi (δ, θ) -open set U such that $x \notin U$ and $F \subseteq U$ and hence $x \notin H$. Therefore $H \subseteq F$ and so, H = F.

 $(f) \Longrightarrow (g)$ Obvious.

(g) \Longrightarrow (h) Let F be an ij - semi (δ, θ) -closed set and $x \notin F$. Then $X \setminus F = U$ is an ij - semi (δ, θ) -open set containing x. Then by (g), there exists a ji - semi (δ, θ) -closed set

H such that $x \in H \subseteq U$ and hence $ji - \delta scl_{\theta}(\{x\}) \subseteq U$. Thus $ji - \delta scl_{\theta}(\{x\}) \cap F = \phi$. (h) \Longrightarrow (a) Let *U* be an ij - semi (δ, θ) -open set and $x \in U$. Then $x \notin X \setminus U$ which is ij - semi (δ, θ) -closed set and by (h), $ji - \delta scl_{\theta}(\{x\}) \cap X \setminus U \subseteq U$. Thus $ji - \delta scl_{\theta}(\{x\}) \subseteq U$. Hence (X, τ_1, τ_2) is pairwise semi $(\delta, \theta) - R_0$ space.

Definition 3.18 : In a bitopological space (X, τ_1, τ_2) for any x,

(a)
$$P - \delta scl_{\theta}(\lbrace x \rbrace) = 12 - \delta scl_{\theta}(\lbrace x \rbrace) \cap 21 - \delta scl_{\theta}(\lbrace x \rbrace).$$

(b)
$$\{x\}^{\theta s \wedge P}_{\delta} = \{x\}^{\theta s \wedge 12}_{\delta} \cap \{x\}^{\delta s \wedge 21}_{\delta}$$

Theorem 3.19: In a pairwise semi $(\delta, \theta) - R_0$ space, for any x and y we have either $P - \delta scl_{\theta}(\{x\}) = P - \delta scl_{\theta}(\{y\})$ or $P - \delta scl_{\theta}(\{x\}) \cap P - \delta scl_{\theta}(\{y\}) = \phi$. **Proof**: Suppose that $P - \delta scl_{\theta}(\{x\}) \cap P - \delta scl_{\theta}(\{y\}) \neq \phi$ and let $z \in [[12 - \delta scl_{\theta}(\{x\}) \cap 21 - \delta scl_{\theta}(\{x\})] \cap [12 - \delta scl_{\theta}(\{y\}) \cap 21 - \delta scl_{\theta}(\{y\})]]$, then $12 - \delta scl_{\theta}(\{z\}) \subseteq [12 - \delta scl_{\theta}(\{x\}) \cap 12 - \delta scl_{\theta}(\{y\})]$ and $21 - \delta scl_{\theta}(\{z\}) \subseteq [21 - \delta scl_{\theta}(\{x\}) \cap 21 - \delta scl_{\theta}(\{y\})]$. Also since $z \in 12 - \delta scl_{\theta}(\{x\})$, then $21 - \delta scl_{\theta}(\{x\}) \subseteq 21 - \delta scl_{\theta}(\{y\})$. This is so because by theorem 3.17 (d), if $z \in 12 - \delta scl_{\theta}(\{x\})$, then $x \in 21 - \delta scl_{\theta}(\{z\})$. This implies $21 - \delta scl_{\theta}(\{x\}) \subseteq 21 - \delta scl_{\theta}(\{y\})$ and $z \in 12 - \delta scl_{\theta}(\{y\})$ implies $21 - \delta scl_{\theta}(\{x\}) \subseteq 21 - \delta scl_{\theta}(\{y\})$ and $z \in 12 - \delta scl_{\theta}(\{y\})$ implies $21 - \delta scl_{\theta}(\{x\}) \subseteq 21 - \delta scl_{\theta}(\{y\})$ and $z \in 12 - \delta scl_{\theta}(\{y\})$ implies $21 - \delta scl_{\theta}(\{x\}) \subseteq 21 - \delta scl_{\theta}(\{y\})$ and $z \in 12 - \delta scl_{\theta}(\{y\})$ implies $21 - \delta scl_{\theta}(\{x\}) \subseteq 21 - \delta scl_{\theta}(\{x\}) \subseteq 12 - \delta scl_{\theta}(\{x\})$. Therefore, $12 - \delta scl_{\theta}(\{x\}) \cap 21 - \delta scl_{\theta}(\{x\}) \subseteq 12 - \delta scl_{\theta}(\{x\}) \cap 21 - \delta scl_{\theta}(\{x\})$. Hence $12 - \delta scl_{\theta}(\{y\}) \cap 21 - \delta scl_{\theta}(\{y\}) \cap 21 - \delta scl_{\theta}(\{y\}) = 12 - \delta scl_{\theta}(\{x\}) \cap 21 - \delta scl_{\theta}(\{x\})$.

Theorem 3.20: In a pairwise semi $(\delta, \theta) - R_0$ space, for any x and y we have either $\{x\}_{\delta}^{\theta_{s}\wedge p} = \{y\}_{\delta}^{\theta_{s}\wedge p}$ or $\{x\}_{\delta}^{\delta_{s}\wedge p} \cap \{y\}_{\delta}^{\theta_{s}\wedge p} \neq \phi$.

Proof : Obvious. Similar to theorem 3.19.

4. Pairwise (δ, θ) -Semi Generalized Closed Sets

Definition 4.1: A subset A of a bitopological space (X, τ_1, τ_2) is called $ij - (\delta, \theta)$ semi generalized closed sets (briefly $ij - (\delta, \theta)$ -sg closed sets) if $ji - \delta scl_{\theta}(A) \subseteq U$ wherever $A \subseteq U$ and U is $ij - \delta$ semi open in (X, τ_1, τ_2) . The complement of an $ij - (\delta, \theta)$ semi generalized closed set is called $ij - (\delta, \theta)$ semi generalized open (briefly $ij - (\delta, \theta)$ -sg open).

If $A \subset X$ is $12 - (\delta, \theta)$ -sg closed and $21 - (\delta, \theta)$ -sg closed, then A is called pairwise (δ, θ) -sg closed.

Example 4.2: Let (X, τ_1, τ_2) be bitopological space with $X = \{a, b, c, d, e\}$ and $\tau_1 = \{\phi, X, \{a\}, \{b\}, \{e\}, \{a, b\}, \{a, e\}, \{b, e\}, \{a, b, e\}\}, \tau_2 = \{\phi, X, \{c\}, \{d\}, \{e\}, \{e\}, \{a, b, e\}\}$

 $\{c, d\}, \{c, e\}, \{d, e\}, \{c, d, e\}\}$. Then $12 - (\delta, \theta)$ -sg closed sets are $\phi, X, \{c, d\}, \{c, d, e\}$.

Theorem 4.3: Every ji - semi (δ, θ) -closed set is $ij - (\delta, \theta)$ -sg closed.

Proof : Let $A \subset X$ be a ji - semi (δ, θ) -closed set. Then $ji - \delta scl_{\theta}(A) = A$. Let $A \subseteq U$ where U is an $ij - \delta$ semi open in (X, τ_1, τ_2) . It follows that $ji - \delta scl_{\theta}(A) \subseteq U$. Therefore A is $ij - (\delta, \theta)$ -sg closed.

Theorem 4.4 Every $ij - (\delta, \theta)$ -sg closed set is ij - sg closed.

Proof: Let A is $ij - (\delta, \theta)$ -sg closed. Since $ji - \delta scl(A) \subseteq ji - scl(A) \subseteq ji - \delta scl_{\theta}(A)$ for every subset A of X, then A is ij - sg closed.

The following example shows that the converse of above theorem needs not true in general.

Example 4.5: Let (X, τ_1, τ_2) be bitopological space with $X = \{a, b, c, d, e\}$ and $\tau_1 = \{\phi, X, \{a\}, \{b\}, \{e\}, \{a, b\}, \{a, e\}, \{b, e\}, \{a, b, e\}\}, \tau_2 = \{\phi, X, \{c\}, \{d\}, \{e\}, \{e\}, \{a, b, e\}\}$

 $\{c, d\}, \{c, e\}, \{d, e\}, \{c, d, e\}\}$. Then $\{a, b\}$ is 12 - sg closed but not $12 - (\delta, \theta)$ -sg closed. **Remark 4.6** From above discussion, we conclude the following discreme:

Remark 4.6 : From above discussion, we conclude the following diagram:

$$ji - \delta$$
 Closed
 \downarrow
 $ji - \delta$ Semi closed
 \downarrow
 $ij - \text{Semi } (\delta, \theta)\text{-closed}$
 \downarrow
 $ij - (\delta, \theta)\text{-sg Closed}$
 \downarrow
 $ij - \text{sg Closed}$

Theorem 4.7: A subset A of a bitopological space (X, τ_1, τ_2) is $ij - (\delta, \theta)$ -sg open if and only if $U \subseteq ji - \delta sint_{\theta}(A)$ whenever U is $ij - \delta$ semi closed in X and $U \subseteq A$. **Proof**: Let A be $ij - (\delta, \theta)$ -sg open and $U \subseteq A$ where U is $ij - \delta$ semi closed. Then $X \setminus A \subseteq X \setminus U$. This implies that $ji - \delta scl_{\theta}(X \setminus A) \subseteq X \setminus U$. Then by theorem 2.2, $ji - \delta scl_{\theta}(X \setminus A) = X \setminus ji - \delta sint_{\theta}(A) \subseteq X \setminus U$. Thus $U \subseteq ji - \delta sint_{\theta}(A)$. Conversely, if U is an $ij - \delta$ semi closed set with $U \subseteq ji - \delta sint_{\theta}(A)$ whenever $U \subseteq A$ then it follows that $X \setminus A \subseteq X \setminus U$ and $X \setminus ji - \delta sint_{\theta}(A) \subseteq X \setminus U$. Thus $ji - \delta scl_{\theta}(X \setminus A) \subseteq X \setminus U$. Therefore $X \setminus A$ is $ij - (\delta, \theta)$ -sg closed and therefore A is $ij - (\delta, \theta)$ -sg open.

Theorem 4.8: Let A be an $ij - (\delta, \theta)$ -sg closed subset of (X, τ_1, τ_2) . Then

(a) $ji - \delta sint_{\theta}(A) \setminus A$ does not contain a nonempty $ij - \delta$ semiclosed set.

(b) $ji - \delta sint_{\theta}(A) \setminus A$ is $ij - (\delta, \theta)$ -sg open.

Proof : (a) Let U be an $ij - \delta$ semi closed set such that $U \subseteq ji - \delta scl_{\theta}(A) \setminus A$. Since $X \setminus U$ is $ij - \delta$ semi open and $A \subseteq X \setminus U$, it follows that $ji - \delta scl_{\theta}(A) \subseteq X \setminus U$ and $U \subseteq X \setminus ji - \delta scl_{\theta}(A)$. This implies that $U \subseteq X \setminus ji - \delta scl_{\theta}(A) \cap ji - \delta scl_{\theta}(A) = \phi$. Hence $U = \phi$.

(b) If A is $ij - (\delta, \theta)$ -sg closed and U is an $ij - \delta$ semi closed set such that $U \subseteq ji - \delta scl_{\theta}(A) \setminus A$ then by (a), U is empty and therefore $U \subseteq ji - \delta sint_{\theta}[ji - \delta sint_{\theta}(A) \setminus A]$. By above theorem, $ji - \delta scl_{\theta}(A) \setminus A$ is $ij - (\delta, \theta)$ -sg open.

Theorem 4.9: If A is an $ij - (\delta, \theta)$ -sg closed set of a space (X, τ_1, τ_2) such that $A \subseteq B \subseteq ji - \delta scl_{\theta}(A)$ then B is also an $ij - (\delta, \theta)$ -sg closed set.

Proof: Let U be an $ij - \delta$ semi open set of (X, τ_1, τ_2) such that $B \subseteq U$. Then $A \subseteq U$. Since A is $ij - (\delta, \theta)$ -sg closed, then $ji - \delta scl_{\theta}(A) \subseteq U$. Also since $ij - \delta scl_{\theta}(A) = \bigcap\{ij - \delta scl(V) : A \subseteq V \in ji - \delta SO(X)\}$. Hence $ji - \delta scl_{\theta}(B) \subseteq ji - \delta scl_{\theta}[ji - \delta scl_{\theta}(A)] = ji - \delta scl_{\theta}(A) \subseteq U$. Therefore B is also an $ij - (\delta, \theta)$ -sg closed set of (X, τ_1, τ_2) .

Theorem 4.10: A bitopological space (X, τ_1, τ_2) is $ij - \delta s - T_1$ space if and only if every $ij - (\delta, \theta)$ -sg closed set is ij - semi (δ, θ) -closed.

Proof: Let $A \subset X$ be $ij - (\delta, \theta)$ -sg closed and $x \in ji - \delta scl_{\theta}(A)$. Since X is $ij - \delta s - T_1$ space, $\{x\}$ is $ij - \delta$ semi closed by definition 1.3. Thus $x \notin ji - \delta scl_{\theta}(A) \setminus A$ by theorem 4.9. Since $x \in ji - \delta scl_{\theta}(A)$, then $x \in A$. Hence $ji - \delta scl_{\theta}(A) \subseteq A$ and A is ij - semi (δ, θ) -closed.

Conversely, let $x \in X$. Assume that $\{x\}$ is not $ij - \delta$ semi closed. Then $X \setminus \{x\}$ is not $ij - \delta$ semi open. Since the only $ij - \delta$ semi open superset of $X \setminus \{x\}$ is X, then $X \setminus \{x\}$ is $ij - (\delta, \theta)$ -sg closed. By hypothesis $X \setminus \{x\}$ is ij - semi (δ, θ) -closed and thus $\{x\}$ is ji - semi (δ, θ) -open. By theorem 2.8, $\{x\}$ is $ij - \delta$ semi regular. Thus $\{x\}$ is $ij - \delta$ semi closed. Hence by definition 1.4, (X, τ_1, τ_2) is $ij - \delta s - T_1$ space.

5. $ij - (\delta, \theta)$ -sg Continuous and $ij - (\delta, \theta)$ -sg Irresolute Functions

Definition 5.1: A function $f: (X, \tau_1, \tau_2) \longrightarrow (Y, \sigma_1, \sigma_2)$ is called an $ij - (\delta, \theta)$ semi generalized continuous (briefly $ij - (\delta, \theta)$ -sg continuous) if $f^{-1}(V)$ is $ij - (\delta, \theta)$ -sg closed in X for every $ji - \delta$ semi closed V of Y.

Theorem 5.2 : If a function $f : (X, \tau_1, \tau_2) \longrightarrow (Y, \sigma_1, \sigma_2)$ is $ij - (\delta, \theta)$ -sg continuous, then f is ij-sg continuous.

Proof: Let V be σ_j - closed set of Y. Since f is $ij - (\delta, \theta)$ -sg continuous, then $f^{-1}(V)$ is $ij - (\delta, \theta)$ -sg closed. Since every $ij - (\delta, \theta)$ -sg closed set is ij - sg closed, then $f^{-1}(V)$ is ij-sg closed set of X and hence f is ij-sg continuous.

Definition 5.3: A function $f: (X, \tau_1, \tau_2) \longrightarrow (Y, \sigma_1, \sigma_2)$ is called an $ij - (\delta, \theta)$ semi generalized irresolute (briefly $ij - (\delta, \theta)$ -sg irresolute) if $f^{-1}(V)$ is $ij - (\delta, \theta)$ -sg closed in X for every $ij - (\delta, \theta)$ -sg closed set V of Y.

Theorem 5.4 : If $f : (X, \tau_1, \tau_2) \longrightarrow (Y, \sigma_1, \sigma_2)$ is an $ij - (\delta, \theta)$ -sg irresolute and $g : (Y, \sigma_1, \sigma_2) \longrightarrow (Z, \rho_1, \rho_2)$ is $ij - (\delta, \theta)$ -sg continuous, then gof is $ij - (\delta, \theta)$ -sg continuous. **Proof.** Let W be a $ji - \delta$ semi closed set of Z. Since g is an $ij - (\delta, \theta)$ -sg continuous, $g^{-1}(W)$ is $ij - (\delta, \theta)$ -sg closed set of Y. Since f is $ij - (\delta, \theta)$ -sg irresolute, $(gof)^{-1}(W) = f^{-1}[g^{-1}(W)]$ is an $ij - (\delta, \theta)$ -sg closed set of X. Hence gof is an $ij - (\delta, \theta)$ -sg continuous. **Theorem 5.5** : If $f : (X, \tau_1, \tau_2) \longrightarrow (Y, \sigma_1, \sigma_2)$ and $g : (Y, \sigma_1, \sigma_2) \longrightarrow (Z, \rho_1, \rho_2)$ are $ij - (\delta, \theta)$ -sg irresolute functions, then gof is $ij - (\delta, \theta)$ -sg irresolute.

Proof: Let W be a $ij - (\delta, \theta)$ -sg closed set of Z. Since g is an $ij - (\delta, \theta)$ -sg irresolute, $g^{-1}(W)$ is $ij - (\delta, \theta)$ -sg closed set of Y. Since f is $ij - (\delta, \theta)$ -sg irresolute, $(gof)^{-1}(W) = f^{-1}[g^{-1}(W)]$ is an $ij - (\delta, \theta)$ -sg closed set of X. Hence gof is an $ij - (\delta, \theta)$ -sg irresolute. **Definition 5.6**: A function $f : (X, \tau_1, \tau_2) \longrightarrow (Y, \sigma_1, \sigma_2)$ is said to be $ij - (\delta, \theta)$ semi generalized closed (briefly $ij - (\delta, \theta)$ -sg closed) if f(U) is an $ij - (\delta, \theta)$ -sg closed set of Y for every $ji - \delta$ semi closed set U of X.

Definition 5.7: A function $f : (X, \tau_1, \tau_2) \longrightarrow (Y, \sigma_1, \sigma_2)$ is said to be ij - pre-semi (δ, θ) -open (resp. ij - pre-semi (δ, θ) -closed) if f(U) is an ij - semi (δ, θ) -open (resp. ij - semi (δ, θ) -closed) set of Y for every ij - semi (δ, θ) -open (resp. ij - semi (δ, θ) -closed) set U of X.

Theorem 5.8 : If a function $f : (X, \tau_1, \tau_2) \longrightarrow (Y, \sigma_1, \sigma_2)$ is a bijective ij - pre-semi (δ, θ) -open $ij - (\delta, \theta)$ -sg continuous, then f is $ij - (\delta, \theta)$ -sg irresolte.

Proof : Let V be an $ij - (\delta, \theta)$ -sg closed set of Y. Assume that $f^{-1}(V) \subseteq U$, where U

is an $ij - \delta$ semi open in X. Then $V \subseteq f(U)$. Since $f(U) \in ij - \delta SO(X)$ and V is an $ij - (\delta, \theta)$ closed set, we have $ji - \delta scl_{\theta}(V) \subseteq f(U)$ and therefore $f^{-1}[ji - \delta scl_{\theta}(V)] \subseteq U$. Since f is $ij - (\delta, \theta)$ continuous and $ji - \delta scl_{\theta}(V)$ is $ji - \delta$ semi closed, it follows that $ji - \delta scl_{\theta}[ji - \delta scl_{\theta}(V)] \subseteq U$ and thus $ji - \delta scl_{\theta}[f^{-1}(V)] \subseteq U$. This means that $f^{-1}(V)$ is $ij - (\delta, \theta)$ closed in X. Therefore f is $ij - (\delta, \theta)$ irresolute.

Theorem 5.9 : If a function $f : (X, \tau_1, \tau_2) \longrightarrow (Y, \sigma_1, \sigma_2))$ is $ij - \delta s$ irresolute and $ij - (\delta, \theta)$ closed, then f(U) is $ij - (\delta, \theta)$ closed in Y for an $ij - (\delta, \theta)$ closed set U of X. **Proof** : Let U be $ij - (\delta, \theta)$ closed in X. Assume that $f(U) \subseteq V$, where V is an $ij - \delta$ semi open set in Y. Thus $U \subseteq f^{-1}(V)$. Since f is $ij - \delta s$ irresolute, then $f^{-1}(V)$ is $ij - \delta$ semi open and U is $ij - (\delta, \theta)$ closed, hence $ji - \delta scl_{\theta}(U) \subseteq V$. Therefore $f[ji - \delta scl_{\theta}(U)] \subseteq V$. Thus $ji - \delta scl_{\theta}[f[ji - \delta scl_{\theta}(U)]] \subseteq V$, since f is $ij - (\delta, \theta)$ closed and $ji - \delta scl_{\theta}(U)$ is $ij - \delta$ semi closed. Hence $ji - \delta scl_{\theta}[f(U)] \subseteq V$. Thus f(U) is $ij - (\delta, \theta)$ closed in Y.

Theorem 5.10: For a function $f : (X, \tau_1, \tau_2) \longrightarrow (Y, \sigma_1, \sigma_2))$, the following are equivalent: (a) f is *ij*- pre-semi (δ, θ) -closed.

(b) For each $U \subset X$, $ij - \delta scl_{\theta}[f(U)] \subseteq f[ij - \delta scl_{\theta}(U)]$.

(c) If $f^{-1}(V) \subseteq U$, where $V \subset Y$ and U is ij- semi (δ, θ) -open in X, then there exists an ij- semi (δ, θ) -open set $W \subset Y$ such that $V \subset W$ and $f^{-1}(W) \subset U$.

(d) If $f^{-1}(y) \subseteq U$ where $y \in Y$ and U is ij - semi (δ, θ) -open in X, then there exists an ij - semi (δ, θ) -open set $W \subset Y$ such that $y \in W$ and $f^{-1}(W) \subseteq U$.

Proof : (a) \Longrightarrow (b) Let $U \subset X$. Then $ij - \delta scl_{\theta}(U)$ is ij - semi (δ, θ) -closed. Since f is ij - pre-semi (δ, θ) -closed, then $f[ij - \delta scl_{\theta}(U)]$ is ij - semi (δ, θ) -closed. Moreover, $f(U) \subseteq f[ij - \delta scl_{\theta}(U)]$ and $ij - \delta scl_{\theta}[f(U)] \subseteq ij - \delta scl_{\theta}[f[ij - \delta scl_{\theta}(U)]]$. Thus $ij - \delta scl_{\theta}[f(U)] \subseteq f[ij - \delta scl_{\theta}(U)]$.

(b) \Longrightarrow (a) Let U be an ij - semi (δ, θ) -closed set of X. By (b), $ij - \delta scl_{\theta}[f(U)] \subseteq f[ij - \delta scl_{\theta}(U)] = f(U)$. Hence f is ij - pre-semi (δ, θ) -closed.

(a) \Longrightarrow (c) Let $U \subseteq X$, $W = Y \setminus f(X \setminus U)$. Since $f^{-1}(V) \subseteq U$, where U is an ij - semi (δ, θ) -open set of X and $V \subseteq W$, then $X \setminus U$ is an ij - semi (δ, θ) -closed. By (a), $f(X \setminus U)$ is ij - semi (δ, θ) -closed set in Y. Hence W is ij - semi (δ, θ) -open in Y and $f^{-1}(W) = X \setminus f^{-1}[f(X \setminus U)] \subseteq U$.

 $(c) \Longrightarrow (d)$ Obvious.

(d) \Longrightarrow (a) Let F be an ij - semi (δ, θ) -closed set of X. Suppose that $y \in Y \setminus f(F)$. Then

 $f^{-1}(y) \subseteq X \setminus F$, where $X \setminus F$ is ij - semi (δ, θ) -open set of X. By (d), there exists an ij- semi (δ, θ) -open set $W \subset Y$ such that $f^{-1}(W) \subseteq X \setminus F$. Thus $F \subseteq f^{-1}(Y \setminus W)$, this implies $f(F) \subseteq Y \setminus W$. Hence $y \in W \subseteq Y \setminus f(F)$ and $Y \setminus f(F)$ is ij - semi (δ, θ) -open set of Y. It follows that f(F) is ij - semi (δ, θ) -closed set in Y and hence f is an ijpre-semi (δ, θ) -closed.

Theorem 5.11 : If a function $f : (X, \tau_1, \tau_2) \longrightarrow (Y, \sigma_1, \sigma_2))$ is $ij - \delta s$ irresolute and ji - pre-semi (δ, θ) -closed, then for every $ij - (\delta, \theta)$ -sg closed set F of X, f(F) is an $ij - (\delta, \theta)$ -sg closed set of Y.

Proof. Suppose that F is an $ij - (\delta, \theta)$ -sg closed set of X. Assume $f(F) \subseteq U$, where $U \in ij - \delta SO(Y)$. Now $F \subseteq f^{-1}(U)$ and since f is $ij - \delta s$ irresolute $f^{-1}(U) \in ij - \delta SO(X)$. But F is an $ij - (\delta, \theta)$ -sg closed. Therefore $ij - \delta scl_{\theta}(F) \subseteq f^{-1}(U)$. Thus $f[ij - \delta scl_{\theta}(F)] \subseteq U$. Now we have $ij - \delta scl_{\theta}[f(F)] \subseteq f[ij - \delta scl_{\theta}(F)] \subseteq U$. This shows that f(F) is an $ij - (\delta, \theta)$ -sg closed set of Y.

Acknowledgement

The authors would like to thank the referees for the useful comments and valuable suggestions for improvement of the paper.

References

- Abu-Donia H. M., New types of generalized closed sets in bitopological spaces, Journal of the Egyptian Mathematical Society, 21 (2013), 318-323.
- [2] Abu Donia H. M., Abd Allah M. A., Nawar A. S., Generalized ψ^{Λ} closed sets in bitopological spaces, Journal of the Egyptian Mathematical Society, 23 (2015), 527-534.
- [3] Caldas M., Dontchev J., G. \wedge_s sets and G. \vee_s sets, Mem. Fac. Sci. Kochi Univ. Math., 21 (2000), 21-30.
- [4] Edward Samuel A. and Balan D., Some aspects of $ij \delta$ semi open sets in bitopological spaces, Global Journal of Pure and Applied Mathematics, (Accepted).
- [5] El-Sharkasy M. M., On \wedge_{α} -sets and the associated topology $T^{\wedge_{\alpha}}$, Journal of the Egyptian Mathematical Society, 23 (2015), 371-376.
- [6] Ghareeb A., Noiri T., ∧ Generalized closed sets in bitopological spaces, Journal of the Egyptian Mathematical Society, 19 (2011), 142-145.

- [7] Jeyanthi M. J., adem Kilicman, Pious Missier S. and Thangavelu P., \wedge_r Sets and separation axioms, Malaysian Journal of Mathematics, 5(1) (2011), 45-60.
- [8] Khalaf A. B. and Omer A. M., S_i open sets and S_i continuity in bitopological spaces, Tamkang journal of Mathematics, 43(1) (2012), 81-97.
- [9] Khedr F. H., Properties of ij delta open sets, Fasciculi Mathematici, 52 (2014), 65-81.
- [10] Khedr F. H. and Abdelhakiem K. M., Generalized \wedge sets and λ sets in bitopological spaces, International Mathematical Forum, 4(15) (2009), 705-715.
- [11] Khedr F. H. and Al-saadi H. S., On pairwise semi-generalized closed sets, JKA: Sci., 21(2) (2009), 269-295.
- [12] Mirmiran M., Weak insertion of a perfectly continuous function between two real-valued functions, Mathematical Sciences And Applications E-Notes, 3(1) (2015), 103-107.