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Abstract

The closed form expressions of stress-intensity factors and of crackshape are ob-
tained by using Fourier transform method for two similar ring shaped cracks in an
isotropic infinite solidand cracks are opened by wedge.

1. Introduction

Wedge is a hard particle or body in the medium. Iron rod are hard in comparison to

matrix made of concrete and cement. Iron bar, in circular shape opens two ring shaped

cracks. Crack faces are stress-free.

These are used by civil engineers in constructing the pillars for bridges etc. he continuous

use of bridges, the iron frame which is circular in shape leaves the matrix. This causes

discontinuity in the medium. The discontinuities are in ring shape. The height and
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radius of the pillar are large in comparison to radius or width of ring shaped disconti-

nuity. Therefore it is considered as infinite three dimensional isotropic solid with ring

shaped discontinuities whose axes coincide with z-axis.

Linear fracture mechanics has established itself as highly satisfory working tool in study-

ing the phenomenon of brittle fracture and crack propagation in solid structures. The

technique appear to be more effective when plane-strain conditions prevail. The crack

problems in shell’s type solid structure or crack discontinuity in shell shape solids poses

limitation.

Two major limitations arise from geometry and material behavior. The geometrical

factors include the relative size of the crack with respect to radius of curvature of

shellsand orientation of crack. So far as material properties are concerned we take up

isotropic homogeneous solid having shell-type discontinuity.

Estekanchi et. al. [1] and Ferreira et. al. [2] discussed buckling of composite shells

by using numerical methods. The research work in [3-12] discussed about buckling of

cylindrical shells under different loading conditions and different material properties

with or without cracks.

Erdogan and Ratwani [13] calculated the stresses causing fatigue and fracture of isotropic

cylindrical shell containing circumferential crack by using numerical method. Erdogan

[14] extended above method to orthotropic cylindrical shell having axial crack.

Ma et. al [15] obtained stress-intensity factors for axial cracks in hollow isotropic cylin-

drical shell by using finite-element technique.Liu et. al [16] analysed the crack closure

effect on stress-intensity factors for circumferentially cracked cylindrical shell. Lal et.al

[17] and Lal [18] has discussed thermo-elastic problem with penny-shaped crack reduc-

ing the problem to Abel integral equation.Jaunky et.al [19] discussed the mechanical

response of laminated composite cylindrical panel in axial compression by using shell

theories.

The problem in present research endeavour is of two ring shaped cracks having axis

parallel to z-axis and opened by an interior wedge. The infinite 3-D isotropic body is

now considered as cylinder of infinite radius and axis as z-axis. The ring shaped cracks

occupy the space r = d, b < |z| < c, 0 ≤ θ ≤ 2π (see figure-1).
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The cracks are formed by an wedge and crack’s faces are stress-free. The medium is such

that the cross-sections obtained by any θ = α are same. It reduces the 3-dimensional

problem to 2-dimensional ie. r and z only two variables. We take cross-section by

θ = 0 and θ = π, (see figure 2a). It is being assumed that σθθ = 0 and the operator
∂
∂θ is null operator. Thus the co-ordinates of any point will be r and z when cylindrical

co-ordinate system is taken.

Thus the physical problem is reduced to the following mixed-boundary value problem.

σrr(d, z) = 0, b < |z| < c, σrz(d, z) = 0, 0 ≤ |z| <∞ (1.1)− (1.2)

ur(d, z) =


u(z) 0 ≤ |z| ≤ b

0, c ≤ |z| <∞
(1.3)

and all physical quantities, i.e., the components of stress and of displacement are zero

as r, z ⇒∞. u(z) is wedge shape function. We checked throughout that

ur(d, z) > 0, b < |z| < c (1.4)
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which means that cracks really open out and the faces of crack do not meet each other,

other than at crack tips, see Burniston [20]. The symmetry of geometry and of loading

reduce the boundary and mixed-boundary conditions (1)-(3) to, (see figure 2b).

σrr(d, z) = 0, b < z < c, σrz(d, z) = 0, 0 ≤ z <∞ (1.5)− (1.6)

ur(d, z) =


u(z) 0 ≤ z ≤ b

0, c ≤ z <∞
(1.7)

The plan of the paper is as follows : Section 1 introduces the problem and reduces to

mixed-boundary value problem. Section 2 formulates the mixed-boundary value prob-

lem and reduces to triple integral equation. Section 3 solves the triple integral equation
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and reduces to Fredholm integral equation of second kind. Section 4 solves the Fred-

holm integral equation. Physical quantities are given in Section 5. This section takes

one special case of wedge shape.

2. Formulation and Reduction to Triple Integral Equation

The equations of equilibrium, after using stress-strain relations are reduced to fourth

order partial differential equation in ur as :

∆2(∆2u, (r, z)) = 0, ∆2 =
1
r

∂

∂r
r
∂

∂r
+

∂2

∂z2
. (2.1)

And the other displacement component uz is related with ur in the following manner

uz(r, z) =
1
P

[
(λ+ 2µ)

∫ 〈
ur
r

+
∂ur
∂r

〉
dz +

∫
∂ur
dz

dr

]
(2.2)

where λ and µ are Lame’s constants. We assume the solution of (2.1) as

ur(r, z) =
∫ ∞

0
cos(sz)[A(s)I1(sr) + rB(s)I0(sr)]ds. (2.3)

Then

uz(r, z) = − 1
P

∫ ∞
0

sin(sz)
[
QA(s)I0(sr) +B(s)

{
(2 + rs)I1(sr) +

(2− rs)
rs

I0(sr)
}]

ds

(2.4)

where P = λ + µ Q = 1 + µ + P and I0(sr), I1(sr) are modified Bessel’s functions of

kind first with order zero and one. The use of stress-strain relations and (2.3)-(2.4) we

get
σrr(r, z) =

∫∞
0 s cos(sz)

[
−A(s)

{
I0(rs)α0 + I1(sr)

sr

}
+B(s){α1I0(sr) + (sr(1 +Q) + 1)I1(sr)}] ds

(2.5)

σrz(r, z) = − µ
P

∫∞
0 s sin(sz) [(P +Q)A(s)I1(sr)

+B(s)
s {I0(rs)(2r2sp+ r2s2) + (rs+ 2)I1(sr)}

]
ds

(2.6)

where A(s) and B(s) are two arbitrary constants to be determined. The quantities in

(2.3)-(2.6) vanishes (z, r)→∞. The boundary condition (1.6), with (2.6), gives

b1A(s) = −b2B(s)
2

(2.7)
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with

b1 = I0(ds)
[
2d2 +

d

s

]
+
s+ 2
s

I1(ds), b2 = (p+Q)I1(ds). (2.8)

Now, the substitution of ur and σrr from (2.3) and (2.5), respectively, and using (2.7)

-(2.8), in boundary conditions (1.7) and (1.5), respectively, give

∫ ∞
0

ψ(s) cos(sz)dx =


u(z), 0 ≤ z ≤ b

0, c ≤ z <∞
(2.9)

∫ ∞
0

ψ(s) cos(sz)ds = −P1(z), b < z < c (2.10)

b1ψ(s) = B(s)[db1I0(ds)− b2I1(sd)] (2.11)

P1(z) =
∫ ∞

0
s cos(sz)ψ(s)M(ds)ds (2.12)

M(sd) = (b2b4 − b1b3 − b5)/b3, b3 = (3−Q)I0(sd) + I1(sd)[1 + s(1 +Q)] (2.13)

b4 = I0(sd)
[
Q− P
P

+
I1(sd)
s

]
, b5 = b1dI0(sd)− b2I1(sd). (2.14)

Thus the physical problem is reduced to triple integral equation given by (2.9)-(2.10).

3. Solution of Triple Integral Equation and Expansion of Some Function

Solution of Triple Integral Equation

The solution of triple integral equation (2.9) - (2.10) is obtained through the method of

Srivastava and Lowengrub [21]. The solution is assumed as,

sπψ(s) = 2
∫ c

b
g(t)

sin st
dt− 2

∫ b

0
u′(t)

sin(st)
dt. (3.1)

Then the use of (3.1) in (2.9) along with the following integral

∫ ∞
0

sin st cos st
t

dt =


π/2, s > x

π/4, s = x

0, s < x

will satisfy (2.9), if ∫ c

b
g(t)dt = u(b). (3.2)
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Then using (3.1) in (2.10) and the value of integral

∫ ∞
0

sin st sinxt
s

ds =
1
2

log
∣∣∣∣ t+ x

t− x

∣∣∣∣
will give

g(t) = − 2
π2

1
ψ(t)

[
∆0(t) +

〈∫ c

b
g(α)−

∫ b

0
u′(α)

〉
M1(α, t)dx

]
, b < t < c (3.3)

M1(α, t) =
∫ c

b

ψ(z)
z2 − r2

K1(α, z)dz, ∆0(t) =
∫ c

b

zψ(z)
z2 − r2

p2(z)dz +D (3.4)− (3.5)

K1(α, z) =
∫ ∞

0
M(sd) cos(sz) sin(sα)ds, p2(z) =

∫ b

0

yu′(y)dy
y2 − z2

(3.6)

ψ(t) =
{
|(t2 − b2)(c2 − t2)|

}1/2 (3.7)

M(sd) is defined in (2.13). D is an arbitrary constant to be determined through (3.2).

(’) over function represents differentiation with respect to argument. (3.3) is Fredholm

integral equation of second kind.

Expansion of Some Functions

We make use of expansion of modified Bessel’s function Iν(z) of order ν. In this case

ν = 0 and ν = 1.

Iν(z) = e−z
d−i∑
m=0

(ν,m)(−1)m
(z

2

)m
, (ν,m) =

∣∣∣∣v +m+
1
2
/m!

∣∣∣∣ν +
m

2
(3.8)

see [22]. It is real part of Iν(z). To get the approximate expansion of M(sd) the following

is needed

b2b4 − b1b3 = e−sd
n−1∑
m=0

n−1∑
r=0

(−1)m+r

(
sd

2

)m+r

e1(m, r, d)
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with

e1(m, r, s) =
∣∣∣∣m+

1
2

∣∣∣∣r +
1
2
e11(m, r, s)

e11(m, r, s) =
(
r +

1
2

)
d4 + d5

(
r +

1
2

)(
m+

1
2

)
d6

b5 =
n−1∑
r=0

n−1∑
m=0

(−1)m+r

(
sd

2

)m+r [
d7

∣∣∣∣m+
1
2

∣∣∣∣r +
3
2

+ d6

∣∣∣∣m+
3
2

∣∣∣∣r +
3
2

]

b−1
5 =

π

4

∞∑
c=0

(2d7 − d8)−1

[
sd

4

(
2d7 − 3d8

2d7 − d8

)e]

M(sd) = π
∞∑
R=0

∞∑
l=0

l∑
p=0

n−1∑
m=0

n−1∑
r=0

(−1)m+r+p+le2(m, r, d)

(
αd

2

)m+r+l−2p−2k
lCp

(
p
k

)
(d1s− 2)k (3.9)

where d1 ∼ d8 alongwith other variables are given in appendix-I.

4. Solution of Fredholm Integral Equation

To solve Fredholm integral equation given in (3.3), we expand the function g(t) in terms

of ‘d’ i.e. distance of ring shaped crack from z-axis.

g(t) =
∞∑
r=0

gr(t)d−r. (4.1)

And then substitute (4.1) in (3.3) and compare the coefficients of {d−m} from both

sides. Before we proceed for above analysis we take appropriate values of k, l, p,m, r so

that in the expansion of M(sd) we retain upto d−5 only. Then from (3.9)

M(sd) =
2

3P

[
t6
d2s

+
1

d4s2

〈
t1 +

2
√
π

3

〉
+

1
d6s3

〈
2
√
p

3
t7 +

4π
9
t6 − t2

〉]
[
1 +

P +Q

2Pd
+
√
π

Pd2

]
This M(sd) gives K1(α, z) from (3.6), after evaluating integrals, as

K1(α, t) =
1
d2

[
t8 +

t9
d

+
t10

d3

]
T (α, t) (4.2)

T (α, t) =
α

2

[
log
∣∣∣∣α+ t

α− t

∣∣∣∣+ t2 log |α2 − t2| − |α2 − t2|
]
, b < α, t < c (4.3)
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where ti, i = 1, 2, · · · , 10 are given in Appendix-II. Evaluate M1(α, t) from (3.4) after

using (4.2) and evaluating integrals which is given as,

M1(α, t) =
(
t8
d2

+
t9
d3

+
t10

d5

)
T1(α, t) (4.4)

T1(α, t) =
πα

2
[e1 + e2α

2 + e3t
2 + 2α2t2 − 2t2 − 2t4], b < α, t < c (4.5)

e1 =
(b2 − c2)2

16
, ‘ e2 =

16
2
− 2(b2 + c2), e3 = b3 + c2 − 4.

Now we use (4.1) in (3.3) and relevant function there in and compare coefficient of

{d−m},m = 0, 1, 2, 3, 4, 5 only. Then we get,

g0(t) = 2
π2

∆0(t)
ψ(t) , g1(t) = 0, g2(t) = t8∆1(t)

4π2ψ(t)
,

g3(t) = t9∆1(t)
π4ψ(t)

, g4(t) = 4t8∆2(t)
π4ψ(t)

, g5(t) = 8
π6ψ(t)

∆3(t)

 (4.6)

where ∆0(t) is defined in (3.5). And

∆0(t) =
π

2
[a0 − a1(t)] +D (4.7)

a0 =
∫ b

0
yu′(y)dy, a1(t) =

∫ b

1
y
ψ(y)u′(y)dy
y2 − t2

(4.7a)

∆1(t) =
π2

4

[
a1〈L1(t)k1 + L2(t)k2〉+

π

2
D

〈
L1(t) + L2(t)

2
π
P1

〉
− L1(t)a01 − L2(t)a02

]
(4.8)

k1 =
∫ c
b
α2dα
ψ(α) , k2 =

∫ c
b
α4dα
ψ(α)

L1(t) = e1 + t2(e3 − 2)− 2t4, L2(t) = e2 + 2t2

Pn =
n∑
r=0

nCr(−1)rC2n−2r(c2 − b2)r
∣∣∣ 2r+1

2

∣∣∣ 1
2

|n1

a01 = u(b)− u(0), a02 =
∫ b

0 y
2u′(y)dy


(4.9)

∆2(t) = t8M7(t)−M5(t),∆3(t) = t10〈M6(t)−M5(t)〉tt9t9M7(t) (4.10)

M7(t) =
∫ c

b

∆1(α
ψ(α)

· T1(α, t)dα, M5(t) =
∫ b

0
u′(y)T1(y, t)dy (4.10a)

M6(t) =
∫ c

b

∆0(α)
ψ(α)

T1(α, t)dα. (4.10b)
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Thus,

g(t) =
2∆4(t)
π2ψ(t)

(4.11)

∆4 =
[
∆0(t) + d−2t8∆1(t)

t2d−3t9
π2

∆1(t) +
2
π2
d−4t8∆2(t) +

2
π4
d−5∆3(t)

]
, b < t < c

(4.11a)

The integrals involved can easily be obtained by any numerical integration method.

Thus the solution of Fredholm integral equation, given by (3.3), is obtained, which

includes one unknown constant D. This is obtained with the help of (3.2) and taking

g(t)2g0(t)

D = −
u(b) +

∫ c
b zψ(z)P2(z)dz

∫ c
b

dt
ψ(t)(z2−t2)

F
(
π
2 , µ0

) c

5. Physical Quantities in General and a Special Wedge

The crack opening displacement and normal stress-component are quantities which are

important in fracture design parameters.

Crack Opening Displacement

The crack opening displacement is the value of integral in (2.9) for z in (b, c). Now

using (3.1) in (2.9) and evaluating the integral we get

ur(d, z) =
∫ c

z
g(t)dt, b < z < c, (5.1)

where g(t) is to be taken from (4.11). Displacement is smooth at crack-tips (d, b) and

(d, c).

Stress Components

Shear Stress

The component of shear stress at r = d is assumed to be zero for all z.

Normal Stress

The normal stress component is obtained from (2.10) for z in [0, b)∪ (c,∞) after taking

second term on left hand side and is given as

σrr(d, z) = ± 1
πψ(z)

[∆4(z)]−
∫ ∞

0
g(t)m2(t, z)dt, 0 ≤ z < b, c < z <∞ (5.2)

m2(p, z) =
∫ ∞

0
M(ds) cos(ps) sin(zs)ds (5.3)
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where (±) signs are to be taken for 0 ≤ z < b as (+) and c < z <∞ as (−) in (5.2).

Stress-component σrr possesses Cauchy type singularities at crack tips, (d, b) and (d, c).

Stress Intensity Factors

The stress-intensity factors at crack tips are defined as

(Kc, Nc) = lim
z→e−

√
z − c(σrr(d, z), σrz(d, z))

(Kb, Nb) = lim
z→b+

√
b− z[σrr(d, z), σrz(d, z)]. (5.3)

But Nc, Nb = 0 using (5.2) in (5.3) and evaluating the limits Kc and Kb are given as :

Kc =
−∆4(c)

π
√

2c(c2 − b2)
, Kb =

∆4(b)
π
√

2b(c2 − b2)
. (5.4)

Special Case of Wedge

We consider that the cracks were opened by wedge, therefore, we take, wedge shape

u(z) as

u(z) = u0 = constant. (5.5)

Now evaluating integral in (3.5) by taking (5.6), we get

P2(z) = 0 and then (5.6)

a0 = 0, a1(t) = 0, a01 = 0, a02 = 0, M5(t) = 0

∆0(t) = D = constant. (5.7)

Now we evaluate the constant D using (t) by taking g(t) = g0(t), we get

D =
ψ0π

2

2
[F (π/2, µ0)], D =

eu0π
2

2F
(
π
2 , µ0

) (5.8)

where F is complete elliptic integral of 1st kind [22]. Thus knowing ∆0(z) from (5.7)

we can easily get ∆4(c) and ∆4(b), then Kc and Kb from (5.4), respectively.
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Appendix - I

d1 = d2(2p+ s), d2 =
s+ 2
s

, d3 = 14s(1 +Q), d4 =
d1

s
+
Q− P
P

d2 − (P +Q)(3−Q)

d5 =
d1(Q− P )

P
, d6 =

d2

s
− (P +Q)d3, d7 = P +Q+ d1, d8 = d2

e2(m, r, s) = e21(m, r, s)
∣∣∣∣m+

1
2

∣∣∣∣r +
1
2

e21(m, r, s) = e1(m, r, s)−
∣∣∣∣r +

1
2

(d7) + d8

(
m+

1
2

)(
r +

1
2

)
.

Appendix - II

t1 = [2(1 +Q)
√
π − 3]/4, 2t2 =

√
π − 6Q, t3 = t2,

t4 = 2(P +
√
π − 2/P ), t5 = (4Q− 7P )/4P

t6 = t4t5 + 3(1 +Q)P, t7 =
√
π(t4 + 8t5)/2− t1,

t8 = 2[t7 + 2
√
π/3]/3P, t9 = (P +Q)t10/

√
π

t10 =
√
πt8/p.
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