# UNRAMIFIED EXTENSIONS OVER QUADRATIC FIELDS 

AHMED ASIMI<br>Departement of Mathematics, Faculty of Sciences<br>University Ibnou Zohr, B. P. 8106 Agadir, Morroco<br>E-mail: asimiahmed2008@gmail.com, asimiahmed@yahoo.fr


#### Abstract

Let $n$ be a given integer greater than $3, P(X)=X^{n}-a X+b$ a polynomial in $\mathbb{Z}[X]$, where $n b$ and $(n-1) a$ are relatively prime, and $d$ be its discriminant. It was shown by Uchida [8] that the splitting field of $P(X)$ is unramified over $\mathbb{Q}(\sqrt{d})$. In this paper we show in the situation above that we necessarily have $d \equiv 1 \bmod$ 4 for all $n$ and that the converse is not true. In this case we show that there are infinitely many square free integers $d \equiv 1 \bmod 4$ that are not discriminant of polynomials of type $P(X)$. At the same time we get infinite quadratic fields whose class numbers are divisible by a given prime number $p$ (theorem 2.1). And at the end of this paper we construct Hilbert's fields of quadratic fields when $n=3$. Unramified means that every finite prime is unramified, and Hilbert's field of a field means the maximal unramified abelian extension of this field.


## 1. Introduction and Notations

Let $\mathbf{K}$ be a number field and $\mathbf{L}$ a subfield of $\mathbf{K}$. Throughout this paper we denote :
$\mathbf{T r}_{\mathbf{K} / \mathbf{L}}$ : The trace of $\mathbf{K} / \mathbf{L}$.
$\mathbf{N}_{\mathbf{K} / \mathbf{L}}$ : The norm of $\mathbf{K} / \mathbf{L}$.
$h(\mathbf{K})$ : the class number of $\mathbf{K}$.

This work is a continuation of a work done by Uchida [8] who determined all splitting fields of $P(X)=X^{n}-a X+b$, a polynomial in $\mathbb{Z}[X]$ where $n b$ and $(n-1) a$ are relatively prime and $d$ be its discriminant for every number $n$ greater than 3 , and it turned out they are unramified over $\mathbb{Q}(\sqrt{d})$.
In this paper we show in the situation above that we necessarily have $d \equiv 1 \bmod 4$ for all $n$ and that the converse is not true. In this case we show that there are infinitely many square free integers $d \equiv 1 \bmod 4$ that are not discriminant of polynomials of type $P(X)$. At the same time we get infinite quadratic fields whose class numbers are divisible by a given prime number $p$ (theorem 2.1). And at the end of this paper we construct Hilbert's fields of quadratic fields when $n=3$. Unramified means that every finite prime is unramified, and Hilbert's field of a field means the maximal unramified abelian extension of this field.

## 2. Unramified Extensions Over Quadratic Fields

Proposition 2.1: Let $d$ be an integer, and assume that there exist $n \geq 2, a, b$ in $\mathbb{Z}$ such that $d=(-1)^{\frac{n(n-1)}{2}}\left(n^{n} b^{n-1}-(n-1)^{n-1} a^{n}\right)$ with $n b$ and $(n-1) a$ relatively prime, we then get:

$$
d \equiv \begin{cases}(-1)^{\frac{n(n-1)}{2}}(1-n), & \bmod 8 \text { if } n \text { is an even number and } n \geq 4 \\ (-1)^{\frac{n(n-1)}{2}} n, & \bmod 8 \text { if } n \text { is an odd number and } n \geq 4 \\ 5+4 a^{3}, & \bmod 8 \text { if } n=3 \\ -4 b+a^{2}, & \bmod 8 \text { if } n=2\end{cases}
$$

Proof : If $n=2$, then $d=-4 b+a^{2}$.
If $n=3$, then $d=4 a^{3}-27 b^{2}$ with $2 a$ and $3 b$ relatively prime, therefore $b^{2} \equiv 1 \bmod 8$, so $d \equiv 5+4 a^{3} \bmod 8$.
If $n \geq 4$, we then have $n \equiv 1$ or $0 \bmod 2$.

- Assume $n \equiv 1 \bmod 2$, then $n-1 \equiv 0 \bmod 2 \operatorname{and} b \equiv 1 \bmod 2$, so $b^{n-1} \equiv 1 \bmod 8$ because $n-1 \geq 3$, hence $d \equiv(-1)^{\frac{n(n-1)}{2}} n^{n} \bmod 8$.
Since $n^{n} \equiv 1 \bmod 8$ because $n$ and 8 are relatively prime, then $d \equiv(-1)^{\frac{n(n-1)}{2}} n$ $\bmod 8$.
- Assume $n \equiv 0 \bmod 2$, then $a \equiv 1 \bmod 2$, so $a^{n} \equiv 1 \bmod 8, n^{n} \equiv 0 \bmod 8$ and $(n-1)^{n-1} \equiv n-1 \bmod 8$ because $n \geq 4$ and $n-1$ and 8 are relatively prime, therefore $d \equiv(-1)^{\frac{n(n-1)}{2}}(1-n) \bmod 8$.

Corollary 1: Let $d$ be an integer, and assume that there exist $n \geq 2, a, b$ integers such that $d=(-1)^{\frac{n(n-1)}{2}}\left(n^{n} b^{n-1}-(n-1)^{n-1} a^{n}\right)$ with $n b$ and $(n-1) a$ relatively prime, we then get $d \equiv 1 \bmod 4$.
Proof : If $n=2$ or $n=3$, then $d \equiv-4 b+a^{2} \equiv 1$ or $d \equiv 5+4 a^{3} \equiv 1 \bmod 4$ respectively (Proposition 2.1).
If $n \equiv 0 \bmod 4$ and $n \geq 4$, then $(-1)^{\frac{n(n-1)}{2}}=1$ and $1-n \equiv 1 \bmod 4$, therefore $d \equiv 1$ $\bmod 4$ (Proposition 2.1).
If $n \equiv 2 \bmod 4$ and $n \geq 4$, then $(-1)^{\frac{n(n-1)}{2}}=-1$ and $1-n \equiv-1 \bmod 4$, therefore $d \equiv 1 \bmod 4($ Proposition 2.1).
If $n \equiv 1 \bmod 4$ and $n \geq 4$, then $(-1)^{\frac{n(n-1)}{2}}=1$, therefore $d \equiv 1 \bmod 4$
(Proposition 2.1).
If $n \equiv-1 \bmod 4$ and $n \geq 4$, then $(-1)^{\frac{n(n-1)}{2}}=-1$, therefore $d \equiv 1 \bmod 4$
(Proposition 2.1).
Corollary 2: Let $d$ be an integer, and assume that there exist $n \geq 3, a, b$ in $\mathbb{Z}$ such that $d=(-1)^{\frac{n(n-1)}{2}}\left(n^{n} b^{n-1}-(n-1)^{n-1} a^{n}\right)$ with $n b$ and $(n-1) a$ relatively prime, we then get:
(1) $d \equiv 1 \bmod 8 \Longleftrightarrow(n \equiv \pm 1$ or 0 or $2 \bmod 8$ if $n \geq 4)$ or $(a \equiv 1 \bmod 2$ if $n=3)$.
(2) $d \equiv 5 \bmod 8 \Longleftrightarrow(n \equiv \pm 5$ or 4 or $6 \bmod 8$ if $n \geq 4)$ or $(a \equiv 0 \bmod 2$ if $n=3)$.

Proof : Assume that $n=3$.
From proposition 2.1, we then deduce :

$$
\begin{aligned}
d \equiv 5 \bmod 8 & \Longleftrightarrow 4 a^{3} \equiv 0 \quad \bmod 8 \\
& \Longleftrightarrow a^{3} \equiv 0 \quad \bmod 2 \\
& \Longleftrightarrow a \equiv 0 \quad \bmod 2 \\
d \equiv 1 \bmod 8 & \Longleftrightarrow 4 a^{3} \equiv-4 \quad \bmod 8 \\
& \Longleftrightarrow 4 a^{3} \equiv 4 \quad \bmod 8 \\
& \Longleftrightarrow a^{3} \equiv 1 \quad \bmod 2 \\
& \Longleftrightarrow a \equiv 1 \quad \bmod 2
\end{aligned}
$$

Assume that $n \geq 4$ and $d \equiv 1 \bmod 8$, from proposition 2.1, we then deduce :

- If $n \equiv 1 \bmod 4$, then $(-1)^{\frac{n(n-1)}{2}}=1, n \equiv 1$ or $5 \bmod 8$ and $d \equiv n \bmod 8$, therefore $n \equiv 1 \bmod 8$.
- If $n \equiv 3 \bmod 4$, then $(-1)^{\frac{n(n-1)}{2}}=-1, n \equiv 3$ or $-1 \bmod 8$ and $d \equiv-n \bmod 8$, therefore $n \equiv-1 \bmod 8$.
- If $n \equiv 0 \bmod 4$, then $(-1)^{\frac{n(n-1)}{2}}=1, n \equiv 0$ or $4 \bmod 8$ and $d \equiv 1-n \bmod 8$, therefore $n \equiv 0 \bmod 8$.
- If $n \equiv 2 \bmod 4$, then $(-1)^{\frac{n(n-1)}{2}}=-1, n \equiv 2$ or $6 \bmod 8$ and $d \equiv n-1 \bmod 8$, therefore $n \equiv 2 \bmod 8$.

The converse is trivial.
Assume that $n \geq 4$ and $d \equiv 5 \bmod 8$, from Proposition 2.1, we then deduce :

- If $n \equiv 1 \bmod 4$, then $(-1)^{\frac{n(n-1)}{2}}=1, n \equiv 1$ or $5 \bmod 8$ and $d \equiv n \bmod 8$, therefore $n \equiv 5 \bmod 8$.
- If $n \equiv 3 \bmod 4$, then $(-1)^{\frac{n(n-1)}{2}}=-1, n \equiv 3$ or $-1 \bmod 8$ and $d \equiv-n \bmod 8$, therefore $n \equiv 3 \bmod 8$.
- If $n \equiv 0 \bmod 4$, then $(-1)^{\frac{n(n-1)}{2}}=1, n \equiv 0$ or $4 \bmod 8$ and $d \equiv 1-n \bmod 8$, therefore $n \equiv 4 \bmod 8$.
- If $n \equiv 2 \bmod 4$, then $(-1)^{\frac{n(n-1)}{2}}=-1, n \equiv 2$ or $6 \bmod 8$ and $d \equiv n-1 \bmod 8$, therefore $n \equiv 6 \bmod 8$.

The converse is trivial.
If $d \equiv 1 \bmod 4$, then $d=1-4 b$ with $b \in \mathbb{Z}$, therefore $d$ is a discriminant of the polynomial $P(X)=X^{2}-X+b$, and we have for all integers $b, 2 b$ and $a=1$ are relatively prime.
Henceforth we assume that $n \geq 3$. And we wonder : " If for every square free integer $d \equiv 1 \bmod 4$, there exist $n \geq 3, a$ and $b \in \mathbb{Z}$ where $n b$ and $(n-1) a$ are relatively prime such that $d=(-1)^{\frac{n(n-1)}{2}}\left(n^{n} b^{n-1}-(n-1)^{n-1} a^{n}\right)$ ?"
Lemma 2.1: Let $P(X)=X^{n}-a X+b$ be a polynomial in $\mathbb{Z}[X]$, with $n b$ and $(n-1) a$ relatively prime, $d$ an integer such that $\sqrt{d} \notin \mathbb{Z}$, and $\alpha_{1}, \ldots, \alpha_{n}$ the roots of $P(X)$.
If $P(X)$ splits completely in $\mathbb{Q}(\sqrt{d})$, then for every root $\alpha_{i}$ that doesnot belong to $\mathbb{Q}$, there exists only one $j \in\{1, \ldots, n\}$ such that $\alpha_{i}+\alpha_{j} \in \mathbb{Z}$ and $\alpha_{i} \alpha_{j} \in \mathbb{Z}$.
Proof: Since $n b$ and $(n-1) a$ are relatively prime, then $\alpha_{i} \neq \alpha_{j}$ for all $i \neq j$. Let $\sigma$ be the $\mathbb{Q}$-automorphism of $\mathbb{Q}(\sqrt{d})$ such that $\sigma(\sqrt{d})=-\sqrt{d}$, and since $P(X) \in \mathbb{Z}[X]$, then $\sigma\left(\alpha_{i}\right) \in\left\{\alpha_{1}, \ldots, \alpha_{n}\right\}$ for all $i \in\{1, \ldots, n\}$, so there exists only one $j \in\{1, \ldots, n\}$ such that $\sigma\left(\alpha_{i}\right)=\alpha_{j}$; therefore $\mathbf{N}_{\mathbb{Q}(\sqrt{d}) / \mathbb{Q}}\left(\alpha_{i}\right)=\alpha_{i} \sigma\left(\alpha_{i}\right)=\alpha_{i} \alpha_{j} \in \mathbb{Z}$ and $\operatorname{Tr}_{\mathbb{Q}(\sqrt{d}) / \mathbb{Q}}\left(\alpha_{i}\right)=$ $\alpha_{i}+\sigma\left(\alpha_{i}\right)=\alpha_{i}+\alpha_{j} \in \mathbb{Z}$.

Corollary 3 : Let $P(X)=X^{n}-a X+b$ be a polynomial in $\mathbb{Z}[X]$, with $n b$ and $(n-1) a$ relatively prime and $d$ be an integer.
If $n$ is an odd number and $P(X)$ splits completely in $\mathbb{Q}(\sqrt{d})$, then $P(X)$ has at least one root in $\mathbb{Z}$, dividing $b$.
Proof : If $\sqrt{d} \in \mathbb{Z}$, the result is trivial.
Assume that $\sqrt{d} \notin \mathbb{Z}$, and since $n$ is an odd number and $P(X)$ has all roots $\alpha_{1}, \ldots$, $\alpha_{n}$ that are all distinct, then $P(X)$ has an odd number of roots. From Lemma 2.1, we deduce there exits $i \in\{1, \ldots, n\}$ such that $\sigma\left(\alpha_{i}\right)=\alpha_{i}($ with $\sigma(\sqrt{d})=-\sqrt{d})$, hence $\alpha_{i} \in \mathbb{Q}$, so $\alpha_{i} \in \mathbb{Z}$ because $\alpha_{i}$ is a root of $P(X) \in \mathbb{Z}[X]$.
But $\alpha_{i}\left(\alpha_{i}^{n-1}-a\right)=b$ and $\alpha_{i} \in \mathbb{Z}$, then $\alpha_{i}$ divides $b$.
Lemma 2.2: Let $d$ be an integer such that $\sqrt{d} \notin \mathbb{Z}$, and there exit $n \geq 3, a, b \in \mathbb{Z}$ such that $d=(-1)^{\frac{n(n-1)}{2}}\left(n^{n} b^{n-1}-(n-1)^{n-1} a^{n}\right)$ where $n b$ and $(n-1) a$ are relatively prime, and $P(X)$ has all roots $\alpha_{1}, \ldots, \alpha_{n}$ in $\mathbb{Q}(\sqrt{d})$ we then get :
(1) All roots are in $\mathbb{Z}$ except two of them, say $\alpha_{1}, \alpha_{2}$.
(2) $\alpha_{1}-\alpha_{i} \neq c\left(\alpha_{1}-\alpha_{j}\right)$ for all $i \neq j$ and $i, j \in\{2, \ldots, n\}$, and $c \in \mathbb{Q}(\sqrt{d})$.
(3) $\alpha_{2}-\alpha_{i} \neq c\left(\alpha_{2}-\alpha_{j}\right)$ for all $i \neq j$ and $i, j \in\{2, \ldots, n\}$.
(4) $\prod_{3 \leq j}\left(\alpha_{2}-\alpha_{j}\right)^{2}\left(\alpha_{1}-\alpha_{j}\right)^{2}=1$.
(5) $\alpha_{i}-\alpha_{j}= \pm 1$ for all $2<i<j$ if $n \geq 4$.
(6) $\alpha_{1}-\alpha_{2}=\mp \sqrt{d}$.

Proof : Let $\sigma$ be a $\mathbb{Q}$-automorphism of $\mathbb{Q}(\sqrt{d})$ such that $\sigma(\sqrt{d})=-\sqrt{d}$. We assume that $\alpha_{i} \notin \mathbb{Q}$ for all $i \in\{1, \ldots, m\}$ ( $m$ is an even number : $m=2 m^{\prime}$ ) and $\alpha_{i} \in \mathbb{Q}$ for all $i \in\{m+1, \ldots, n\}$ with $m \leq n$ and $\{m+1, \ldots, n\}=\emptyset$ if $m=n$.
From lemma 2.1, we get for all $i \in\left\{1, \ldots, m^{\prime}\right\} s_{i}=\alpha_{i}+\alpha_{i+m^{\prime}} \in \mathbb{Z}$ and $p_{i}=\alpha_{i} \alpha_{i+m^{\prime}} \in \mathbb{Z}$, then $\alpha_{i}=\frac{-s_{i}+\sqrt{s_{i}^{2}-4 p_{i}}}{2}$ and $\alpha_{i+m^{\prime}}=\frac{s_{i}+\sqrt{s_{i}^{2}-4 p_{i}}}{2}$. But $\mathbb{Q}(\sqrt{d})=\mathbb{Q}\left(\alpha_{i}\right)=\mathbb{Q}\left(\sqrt{s_{i}^{2}-4 p_{i}}\right)$, then $2 \sqrt{s_{i}^{2}-4 p_{i}}=n_{i}+m_{i} \sqrt{d}$ with $n_{i}$ and $m_{i} \neq 0$ are two numbers of the same parity, so $4\left(s_{i}^{2}-4 p_{i}\right)=n_{i}^{2}+2 n_{i} m_{i} \sqrt{d}+d m_{i}^{2}$, hence $n_{i} m_{i}=0$, therefore $n_{i}=0$, and $\sqrt{s_{i}^{2}-4 p_{i}}=m_{i}^{\prime} \sqrt{d}$ with $m_{i}^{\prime} \in \mathbb{Z}$.
But for all $i \in\left\{1, \ldots, m^{\prime}\right\}$, we have $\alpha_{i}-\alpha_{i+m^{\prime}}=\sqrt{s_{i}^{2}-4 p_{i}}=m_{i}^{\prime} \sqrt{d}$.

Since $d$ is the discriminant of $P(X)$, and let $H=\left\{\left(i, i+m^{\prime}\right), i=1, \ldots, m^{\prime}\right\}$, then from [8] we get:

$$
\begin{aligned}
d & =\prod_{i<j}\left(\alpha_{i}-\alpha_{j}\right)^{2} \\
& =\prod_{i=1}^{i=m^{\prime}}\left(\alpha_{i}-\alpha_{i+m^{\prime}}\right)^{2} \prod_{\substack{i<j \\
(i, j) \notin H}}\left(\alpha_{i}-\alpha_{j}\right)^{2} \\
& =\prod_{i=1}^{i=m^{\prime}} m_{i}^{\prime 2} d \prod_{\substack{i<j \\
(i, j) \notin H}}\left(\alpha_{i}-\alpha_{j}\right)^{2} \\
& =d^{m^{\prime}} \underbrace{\prod_{i=1}^{i=m^{\prime}} m_{i}^{\prime 2}}_{\in \mathbb{Z}} \underbrace{\prod_{i<j}^{(i, j) \notin H}}_{\in \mathbb{Z}} \boldsymbol{(} \alpha_{i}-\alpha_{j})^{2}
\end{aligned}
$$

then $m^{\prime}=1$ and $m_{1}^{2}=1$, therefore we deduce (1), (4), (5) and (6).
(2) If there exist $c \in \mathbb{Q}(\sqrt{d})$ and $2<i<j$ such that $\alpha_{1}-\alpha_{i}=c\left(\alpha_{1}-\alpha_{j}\right)$ we then get $\alpha_{i}=\alpha_{j}$ if $c=1$ otherwise we have $\alpha_{1} \in \mathbb{Q}$. The proof of (3) is similar to (2).

Proposition 2.2: Let $d$ be a square free integer such that $h(\mathbb{Q}(\sqrt{d}))=1$, then the equality $d=(-1)^{\frac{n(n-1)}{2}}\left(n^{n} b^{n-1}-(n-1)^{n-1} a^{n}\right)$ does not hold for every integer $n \geq 5$, $a, b$ in $\mathbb{Z}$ with $n b$ and $(n-1) a$ relatively prime.
Proof : Assume there exist $n \geq 5, a, b$ in $\mathbb{Z}$ such that $d=(-1)^{\frac{n(n-1)}{2}}\left(n^{n} b^{n-1}-\right.$ $\left.(n-1)^{n-1} a^{n}\right)$ with $n b$ and $(n-1) a$ relatively prime, then $d$ is the discriminant of $P(X)=X^{n}-a X+b, d=\prod_{i<j}\left(\alpha_{i}-\alpha_{j}\right)^{2}$ where $\alpha_{i}$ are the roots of $P(X)$ for all $i \in\{1, \ldots, n\}$ and the splitting field $\mathbb{Q}\left(\alpha_{1}, \ldots, \alpha_{n}\right)$ of a polynomial $P(X)=X^{n}-a X+b$ is an unramified extension over $\mathbb{Q}(\sqrt{d})$.
Since $h(\mathbb{Q}(\sqrt{d}))=1$, then $\mathbb{Q}\left(\alpha_{1}, \ldots, \alpha_{n}\right)=\mathbb{Q}(\sqrt{d})$, so $P(X)$ splits completely in $\mathbb{Q}(\sqrt{d})$.
If $n \geq 5$, from Lemma 2.2 we then get (for example) :

$$
\left\{\begin{array}{l}
\alpha_{3}-\alpha_{4}=-1 \\
\alpha_{3}-\alpha_{5}=-1 \\
\alpha_{4}-\alpha_{5}=1
\end{array}\right.
$$

because $\alpha_{i} \neq \alpha_{j}$ and $\alpha_{i}-\alpha_{j}= \pm 1$ for all $2<i<j$.
(1) $-(2) \Longleftrightarrow \alpha_{4}-\alpha_{5}=2 \Longleftrightarrow 2=-1$ which is impossible.

Proposition 2.3: Let $d$ be the discriminant of the equation $P(X)=X^{n}-a X+b$ where $n b$ and $(n-1) a$ are relatively prime, we then get :
$\sqrt{d} \in \mathbb{Q} \Longleftrightarrow P(X)$ splits completely in $\mathbb{Q}$.

Proof : Since $d$ is the discriminant of the equation $P(X)=X^{n}-a X+b$ where $n b$ and $(n-1) a$ are relatively prime, we then get $d=\prod_{i<j}\left(\alpha_{i}-\alpha_{j}\right)^{2}$ where $\alpha_{i}$ are the roots of $P(X)$ for all $i \in\{1, \ldots, n\}$ and $\mathbb{Q}\left(\alpha_{1}, \ldots, \alpha_{n}\right)$ is an unramified extension of $\mathbb{Q}(\sqrt{d})[8]$. If $\sqrt{d} \in \mathbb{Q}$, then $\mathbb{Q}(\sqrt{d})=\mathbb{Q}$, so $\mathbb{Q}\left(\alpha_{1}, \ldots, \alpha_{n}\right)=\mathbb{Q}$, therefore $\alpha_{i} \in \mathbb{Q}$ for all $i \in\{1, \ldots, n\}$. The converse is trivial.
Lemma 2.3: Let $d$ be an integer, $n \geq 3$, and $p$ a prime number.
If $p$ is a common divisor of $n$ and $d$, then there are no $a, b$ in $\mathbb{Z}$ such that $d=$ $(-1)^{\frac{n(n-1)}{2}}\left(n^{n} b^{n-1}-(n-1)^{n-1} a^{n}\right)$ where $n b$ and $(n-1) a$ are relatively prime.
Proof : Assume that there exist $n \geq 3, a, b$ in $\mathbb{Z}$ such that $d=(-1)^{\frac{n(n-1)}{2}}\left(n^{n} b^{n-1}-\right.$ $(n-1)^{n-1} a^{n}$ ) where $n b$ and $(n-1) a$ are relatively prime. Since $p$ divides $n$ and $d$, then $p^{n}$ divides $n^{n}$, so $p$ divides $a^{n}$ because $p$ is relatively prime with $n-1$, hence $p$ divides $a$, this is a contradiction with $n b$ and $(n-1) a$ relatively prime.
Remark 1: If $d=(-1)^{\frac{n(n-1)}{2}}\left(n^{n} b^{n-1}-(n-1)^{n-1} a^{n}\right)$ where $n b$ and $(n-1) a$ are relatively prime, then $d$ is relatively prime with $n, n-1, a$ and $b$.
Proposition 2.4: Let $P(X)=X^{n}-a X+b \in \mathbb{Z}[X]$ where $n b$ and $(n-1) a$ are relatively prime, $d$ the discriminant of $P(X)$, and $\alpha_{1}, \ldots, \alpha_{n}$ the roots of $P(X)$, we then get :
(1) $P(X)$ has at most two roots in $\mathbb{Z}$ dividing $b$. If $P(X)$ has two roots (for example $\alpha_{1}$ and $\left.\alpha_{2}\right)$, then $\alpha_{1}-\alpha_{2}= \pm 1$.
(2) $P(X)$ does not have roots in $\mathbb{Q}(\sqrt{d})$ or it has exactly two roots in $\mathbb{Q}(\sqrt{d})-\mathbb{Q}$ (for example $\alpha_{1}$ and $\alpha_{2}$ ), in this case we then get :

$$
\begin{gathered}
\prod_{\substack{i<j \\
(i, j) \neq(1,2)}}\left(\alpha_{i}-\alpha_{j}\right)^{2}=1 . \\
\alpha_{1}-\alpha_{2}=\mp \sqrt{d}
\end{gathered}
$$

The proof of this proposition relies on Lemma 2.2.
Corollary 4: Let $d$ be a discriminant of a polynomial $P(X)=X^{4}-a X+b$ in $\mathbb{Z}[X]$ where $4 b$ and $3 a$ are relatively prime, then $P(X)$ does not have roots in $\mathbb{Q}(\sqrt{d})$ or has exactly one root in $\mathbb{Z}$.

Proof : Assume that $P(X)$ has a root in $\mathbb{Q}(\sqrt{d})-\mathbb{Q}$, then $P(X)$ has two roots in $\mathbb{Q}(\sqrt{d})-\mathbb{Q}\left(\right.$ for example $\alpha_{1}$ and $\left.\alpha_{2}\right)$ and two roots in $\mathbb{Z}$ dividing $b$ (for example $\alpha_{3}$ and $\alpha_{4}$ ) such that $\prod_{3 \leq j \leq 4}\left(\left(\alpha_{1}-\alpha_{j}\right)\left(\alpha_{2}-\alpha_{j}\right)\right)^{2}=1$ (Proposition 2.4). But $\alpha_{1}$ and $\alpha_{2}$ are conjugate, then $\alpha_{1}-\alpha_{j}$ and $\alpha_{2}-\alpha_{j}$ are conjugate too and are integers in $\mathbb{Q}(\sqrt{d})$, therefore $\left(\alpha_{1}-\alpha_{j}\right)\left(\alpha_{2}-\alpha_{j}\right)=\alpha_{j}^{2}-\left(\alpha_{1}+\alpha_{2}\right) \alpha_{j}+\alpha_{1} \alpha_{2}= \pm 1$, hence $\alpha_{j}$ (for $j=3$ and $j=4)$ are solutions of the equation $X^{2}-\left(\alpha_{1}+\alpha_{2}\right) X+\alpha_{1} \alpha_{2}-( \pm 1)=0$, and since $\alpha_{1}$ and $\alpha_{2}$ are solutions of the equation $X^{2}-\left(\alpha_{1}+\alpha_{2}\right) X+\alpha_{1} \alpha_{2}=0$, then $\alpha_{1}+\alpha_{2}=\alpha_{3}+\alpha_{4}$, $\alpha_{1} \alpha_{2}-( \pm 1)=\alpha_{3} \alpha_{4}$ and

$$
\begin{aligned}
P(X) & =\left(X^{2}-\left(\alpha_{1}+\alpha_{2}\right) X+\alpha_{1} \alpha_{2}\right)\left(X^{2}-\left(\alpha_{1}+\alpha_{2}\right) X+\alpha_{1} \alpha_{2}-( \pm 1)\right) \\
& =X^{4}-2\left(\alpha_{1}+\alpha_{2}\right) X^{3}+\left(2 \alpha_{1} \alpha_{2}-( \pm 1)+\left(\alpha_{1}+\alpha_{2}\right)^{2}\right) X^{2} \\
& -\left(\alpha_{1}+\alpha_{2}\right)\left(2 \alpha_{1} \alpha_{2}-( \pm 1)\right) X+\alpha_{1} \alpha_{2}\left(\alpha_{1} \alpha_{2}-( \pm 1)\right)
\end{aligned}
$$

we deduce that:

$$
\left\{\begin{array}{l}
\alpha_{1}+\alpha_{2}=0  \tag{1}\\
2 \alpha_{1} \alpha_{2}-( \pm 1)+\left(\alpha_{1}+\alpha_{2}\right)^{2}=0 \\
\left.\alpha_{1}+\alpha_{2}\right)\left(2 \alpha_{1} \alpha_{2}-( \pm 1)=4\right. \\
\alpha_{1} \alpha_{2}\left(\alpha_{1} \alpha_{2}-( \pm 1)\right)=b
\end{array}\right.
$$

From (1) we have $\alpha_{1}=-\alpha_{2}$, we then substitute in (2), we obtain $\alpha_{1}^{2}= \pm \frac{1}{2}$, which is in contradiction with $\alpha_{1}$ integer in $\mathbb{Q}(\sqrt{d})$. We deduce that $P(X)$ does not have roots in $\mathbb{Q}(\sqrt{d})$.
Since $\operatorname{deg}(P)=4$, then by Proposition 2.4, we get $P(X)$ has two roots in $\mathbb{Q}(\sqrt{d})-\mathbb{Q}$ if only if $P(X)$ has two roots in $\mathbb{Z}$.
Proposition 2.5 : Let $p$ be a prime number, $n$ be an integer such that $p \equiv 1 \bmod n-1$ and $P(X)=X^{n}-a X+b$ a polynomial in $\mathbb{Z}[X]$ where $n b$ and $(n-1) a$ are relatively prime, we then get :
(1) If $p$ divides $b$ and the order of $a$ is $n-1$ modulo $p$, then $P(X)$ is either irreducible over $\mathbb{Q}$ or has irreducible factors of degree 1 and degree $(n-1)$, in such case it is reducible over $\mathbb{Q}$.
(2) If $p$ is relatively prime with $b, n=p$ and $a \equiv 1 \bmod p$, then $P(X)$ is irreducible over $\mathbb{Q}$.

Proof : (1) If $p$ divides $b$, we then get:

$$
P(X)=X^{n}-a X+b \equiv X\left(X^{n-1}-a\right) \bmod p
$$

Recall that $\mathbb{Z} / p \mathbb{Z}$ contains all $(n-1)$-th roots of unity, because $p$ is a prime number such that $n-1$ divides $p-1$. But, $X^{n-1}-a$ is irreducible over $\mathbb{Z} / p \mathbb{Z}$ if and only if
$a$ is a primitive root mod $p$ (Kummer's theorem ). In our case we have $a$ relatively prime with $p$ because $p$ divides $b$, and $n b$ and $(n-1) a$ are relatively prime, hence $a$ is a primitive root $\bmod p$, then $X^{n-1}-a$ is irreducible over $\mathbb{Z} / p \mathbb{Z}$. Therefore we get 1 ).
(2) We assume that $p$ is relatively prime with $b$ and $a \equiv 1 \bmod p$, then $P(X) \equiv X^{p}-X+b$ $\bmod p$. By Artin Schreier's theorem [5], we deduce that $P(X)$ is irreducible over $\mathbb{Z} / p \mathbb{Z}$ if and only if $P(X)$ does not have roots in $\mathbb{Z} / p \mathbb{Z}$. In our case, it is easy to see that $P(X)$ does not have roots in $\mathbb{Z} / p \mathbb{Z}$, therefore $P(X)$ is irreducible over $\mathbb{Z} / p \mathbb{Z}$, and then over $\mathbb{Q}$.

Proposition 2.6 : Let $p$ be a prime number, $d$ a discriminant of a polynomial $P(X)=$ $X^{p}-a X+b$ in $\mathbb{Z}[X]$ where $p b$ and $(p-1) a$ are relatively prime, and $h(\mathbb{Q}(\sqrt{d}))=p$. $P(X)$ is reducible over $\mathbb{Q}(\sqrt{d})$ if only if $P(X)$ splits completely in $\mathbb{Q}(\sqrt{d})$.
Proof : $\Longleftarrow)$ Is trivial.
$\Longrightarrow)$ Let $\alpha_{1}, \ldots, \alpha_{p}$ be the roots of $P(X)=X^{p}-a X+b$. Assume that there exists $i \in$ $\{1, \ldots, p\}$ such that $\alpha_{i} \notin \mathbb{Q}(\sqrt{d})$. Since $\mathbb{Q}(\sqrt{d}) \subset \mathbb{Q}\left(\sqrt{d}, \alpha_{i}\right) \subset \mathbb{Q}\left(\alpha_{1}, \ldots, \alpha_{p}\right), \mathbb{Q}\left(\alpha_{1}, \ldots, \alpha_{p}\right)$ is an unramified extension over $\mathbb{Q}(\sqrt{d})$, and $\left[\mathbb{Q}\left(\sqrt{d}, \alpha_{i}\right): \mathbb{Q}(\sqrt{d})\right]>1$ divides $p$, then $\left[\mathbb{Q}\left(\sqrt{d}, \alpha_{i}\right): \mathbb{Q}(\sqrt{d})\right]=p$, so $P(X)$ is a minimal polynomial of $\alpha_{i}$ over $\mathbb{Q}(\sqrt{d})$, therefore $P(X)$ is irreducible over $\mathbb{Q}(\sqrt{d})$.
Corollary 5: Let $p$ be a prime number, $d$ a discriminant of a polynomial $P(X)=$ $X^{p}-a X+b$ in $\mathbb{Z}[X]$ where $p b$ and $(p-1) a$ are relatively prime, and $h(\mathbb{Q}(\sqrt{d}))=p$, then $P(X)$ is irreducible over $\mathbb{Q}$ or $P(X)$ splits completely in $\mathbb{Q}(\sqrt{d})$.
Corollary 6: Let $d$ be a discriminant of a polynomial $P(X)=X^{n}-a X+b$ in $\mathbb{Z}[X]$ where $n b$ and $(n-1) a$ are relatively prime, we then get :
If $n \geq 4$ then $h(\mathbb{Q}(\sqrt{d})) \geq 2$.
The proof of this corollary relies on Proposition 2.4 and Corollary 4.
Proposition 2.7: Let $P(X)=X^{3}-a X+b$ be a polynomial in $\mathbb{Z}[X]$ where $3 b$ and $2 a$ are relatively prime, and $d$ be its discriminant, we then get :

If $P(X)$ has a root $t$ in $\mathbb{Z}$, then

$$
\begin{cases}9 t^{2}-d & \pm 4 \\ t\left(a-t^{2}\right) & =b \\ -3 t^{2}+4 a & =d\end{cases}
$$

Proof : If $P(X)$ has a root $t$ in $\mathbb{Z}$, we then deduce from proposition 2.4 and 2.5 that
$P(X)$ has two roots $\alpha_{1}$ and $\alpha_{2}$ in $\mathbb{Q}(\sqrt{d})-\mathbb{Q}$ such that

$$
\left\{\begin{array}{l}
\alpha_{1}-\alpha_{2}= \pm \sqrt{d} \\
\left(t-\alpha_{1}\right)\left(t-\alpha_{2}\right)= \pm 1 \\
P(X)=(X-t)\left(X^{2}+t X+t^{2}-a\right) \\
-3 t^{3}+4 a=d \\
t\left(a-t^{2}\right)=b
\end{array}\right.
$$

Therefore $\alpha_{1}$ and $\alpha_{2}$ are roots of the equation $X^{2}+t X+t^{2}-a=0$, so $\alpha_{1}=\frac{-t+\sqrt{d}}{2}$ and $\alpha_{2}=\frac{-t-\sqrt{d}}{2}$, hence

$$
\begin{aligned}
\left(t-\alpha_{1}\right)\left(t-\alpha_{2}\right)= \pm 1 & \Longleftrightarrow \frac{3 t-\sqrt{d}}{2} \frac{3 t+\sqrt{d}}{2}= \pm 1 \\
& \Longleftrightarrow 9 t^{2}-d= \pm 4
\end{aligned}
$$

We then deduce that

$$
\begin{cases}9 t^{2}-d & = \pm 4 \\ t\left(a-t^{2}\right) & =b \\ -3 t^{2}+4 a & =d\end{cases}
$$

Corollary 7 : Let $P(X)=X^{3}-a X+b$ be a polynomial in $\mathbb{Z}[X]$ where $3 b$ and $2 a$ are relatively prime, and $d$ be its discriminant, we then get :
If $h(\mathbb{Q}(\sqrt{d}))=1$, then $d \equiv 5 \bmod 8$ and is a prime number.
Proof : Assume that $h(\mathbb{Q}(\sqrt{d}))=1$. Since $d$ is the discriminant of the polynomial $P(X)=X^{3}-a X+b \in \mathbb{Z}[X]$ where $3 b$ and $2 a$ are relatively prime, then $P(X)$ splits completely in $\mathbb{Q}(\sqrt{d})$. From Proposition 2.4 and 2.6 , there exists an odd number $t$ such that $9 t^{2}-d= \pm 4$. As $t$ is an odd number, then $t^{2} \equiv 1 \bmod 8$. By the formula $9 t^{2}-d= \pm 4$ we deduce $d \equiv 1-( \pm 4) \equiv 5 \bmod 8$.
If $d$ is not a prime number, then by [3], we get $h(\mathbb{Q}(\sqrt{d}))>1$.
Corollary $8:$ Let $d \equiv 1 \bmod 4$ be a square free integer for which there exist $a$ and $b$ in $\mathbb{Z}$ such that $d=4 a^{3}-27 b^{2}$ where $3 b$ and $2 a$ are relatively prime.
If $h(\mathbb{Q}(\sqrt{d}))=1$ then $d=5$ or there exists an odd number $t$ such that

$$
\begin{cases}9 t^{2}+4 & =d \\ t\left(a-t^{2}\right) & =b \\ -3 t^{2}+4 a & =d\end{cases}
$$

Proof : Let $d \equiv 1 \bmod 4$ be a square free integer such that $h(\mathbb{Q}(\sqrt{d}))=1$. We assume that there exist $a$ and $b$ in $\mathbb{Z}$ such that $d=4 a^{3}-27 b^{2}$ where $3 b$ and $2 a$ are relatively prime. We refer to Proposition 2.6 and Corollary 7, we then get :
$d$ is a prime number and there exists an odd number $t$ such that

$$
\begin{cases}9 t^{2}+( \pm 4) & = \pm d \\ t\left(a-t^{2}\right) & =b \\ -3 t^{2}+4 a & =d\end{cases}
$$

But we have :

$$
\left\{\begin{aligned}
9 t^{2}-4=d & \Longleftrightarrow(3 t-2)(3 t+2)=d \\
& \Longleftrightarrow(3 t-2=1 \text { and } 3 t+2=d) \text { or }(3 t-2=-d \text { and } 3 t+2=-1) \\
& \Longleftrightarrow d=5
\end{aligned}\right.
$$

Remark 2 : The converse of Corollary 8 is not in general true : There exist a square free integer $d, a$ and $b$ in $\mathbb{Z}$ such that $d=4 a^{3}-27 b^{2}$ where $3 b$ and $2 a$ are relatively prime, and an odd number $t$ such that

$$
\begin{cases}9 t^{2}+4 & =d \\ t\left(a-t^{2}\right) & =b \\ -3 t^{2}+4 a & =d\end{cases}
$$

But $h(\mathbb{Q}(\sqrt{d}))>1$.
Example 1 : We refer to [4] and we use the Maple's software, to deduce the following examples :
$a=76, b=255, t=5, d=229, P(X)=(X-5)\left(X^{2}+5 X-51\right), h(\mathbb{Q}(\sqrt{229}))=3$
$a=244, b=1467, t=9, d=733, P(X)=(X-9)\left(X^{2}+9 X-163\right), h(\mathbb{Q}(\sqrt{229}))=3$
$a=364, b=2673, t=11, d=1093, P(X)=(X-11)\left(X^{2}+11 X-243\right)$,
$h(\mathbb{Q}(\sqrt{229}))=5$
Corollary 9 : For all non prime square free integers $d \equiv 1 \bmod 8$ or $d \equiv 5 \bmod 8$ such that $h(\mathbb{Q}(\sqrt{d}))=1$, the equality $d=(-1)^{\frac{n(n-1)}{n}}\left(n^{n} b^{n-1}-(n-1)^{n-1} a^{n}\right)$ does not hold for $n \geq 3, a$ and $b$ in $\mathbb{Z}$ where $n b$ and $(n-1) a$ are relatively prime.
The proof of this corollary relies on Corollary 7.
Theorem 2.1 : Let $p$ be a prime number, then there exist infinitely many quadratic fields $\mathbb{Q}(\sqrt{d})$ with class number divisible by $p$, where $d=(-1)^{\frac{p(p-1)}{2}}\left(p^{p}-(p-1)^{(p-1)} a^{p}\right)$ and $p$ is relatively prime with $a$ if $p \neq 2$.
Proof : If $p=2$, we consider the quadratic field $\mathbb{Q}\left(\sqrt{q q^{\prime}}\right)$ where $q$ and $q^{\prime}$ are two distinct prime numbers such that $q \equiv q^{\prime} \equiv 1 \bmod 4$. It is easy to see that $\mathbb{Q}\left(\sqrt{q}, \sqrt{q^{\prime}}\right)$ is an unramified extension over $\mathbb{Q}\left(\sqrt{q q^{\prime}}\right)$, therefore there exist infinitely many quadratic fields with class number divisible by 2 .

If $p>2$, we consider $P(X)=X^{p}-a X+1 \in \mathbb{Z}[X]$ with $a \equiv 1 \bmod p$, then $(p-1) a$ and $p$ are relatively prime, and $P(X)=X^{p}-X+1$ in $\mathbb{Z} / p \mathbb{Z}[X]$. By Artin Schreier's theorem, we deduce that $P(X)$ is irreducible over $\mathbb{Z} / p \mathbb{Z}$ if and only if $P(X)$ does not have roots in $\mathbb{Z} / p \mathbb{Z}$. In our case, it is easy to see that $P(X)$ does not have roots in $\mathbb{Z} / p \mathbb{Z}$, therefor $p$ is unramified in the splitting field denoted $\mathbf{K}$ of a polynomial $P(X)$ and divides the residue class degree of $p$ in $\mathbf{K} / \mathbb{Q}$. Since $p$ is an odd number, $\mathbb{Q}(\sqrt{d}) \subset \mathbf{K}$ where $d$ is the discriminant of $P(X)$ and $\mathbf{K}$ is an unramified extension over $\mathbb{Q}(\sqrt{d})$ [8], therefore $p$ divides the class number of $\mathbb{Q}(\sqrt{d})$.
It seems that there exist infinitely many numbers $a \equiv 1 \bmod p$ such that $p$ divides the class number of $\mathbb{Q}(\sqrt{d})$ with $d$ is a discriminant of $P(X)=X^{p}-a X+1$. Let $a_{0}$ be one of such numbers, and $d_{0}$ be a discriminant of $P(X)=X^{p}-a_{0} X+1$. We claim that there are only finite numbers of $a$ 's with $\mathbb{Q}(\sqrt{d})=\mathbb{Q}\left(\sqrt{d_{0}}\right)$. Indeed, since $\mathbb{Q}(\sqrt{d})=\mathbb{Q}\left(\sqrt{d_{0}}\right)$, then there exist an integer $m$ such that $d=m^{2} d_{0}$, hence $m^{2}\left(p^{p}-(p-1)^{p-1} a_{0}^{p}\right)=$ $p^{p}-(p-1)^{p-1} a^{p}$, therefore the pair $(m, a)$ is an integral solution of the Diophantine equation

$$
\begin{equation*}
\left(p^{p}-(p-1)^{p-1} a_{0}^{p}\right) Y^{2}=-(p-1)^{p-1} X^{p}+p^{p} \tag{1}
\end{equation*}
$$

Since there exist only a finite number of integral solutions of (1) by Siegel's theorem, therefore there exist infinitely many quadratic fields with class number divisible by $p$. In the two cases we have shown that for every prime number $p$ there exist infinitely many quadratic fields with class number divisible by $p$.

Remark 3 : Theorem 2.1 is considered as a sort of generalization of Honda [2], where the case $p=3$ is treated.

Theorem 2.2: Let $n$ be a given a number greater than 2 , then there exist infinitely many quadratic fields with class number divisible by $n$.
Proof : If $n=2$, Theorem 2.1.
If $n>2$, we refer to Dirichlet's theorem [9], we deduce that there exists a prime number $p$ such that $p \equiv 1 \bmod 2 n$. We consider $P(X)=X^{p}-a X+b \in \mathbb{Z}[X]$ with $p$ divides $b,(p-1) a$ and $p b$ are relatively prime, $d$ its discriminant and the order of $a$ is equal to $p-1$. From Proposition 2.5 we get $P(X)=X\left(X^{p-1}-a\right)$ in $\mathbb{Z} / p \mathbb{Z}[X], X^{p-1}-a$ is irreducible over $\mathbb{Z} / p \mathbb{Z}$, therefore $p$ is unramified in the splitting field denoted $\mathbf{K}$ of a polynomial $P(X)$ and $p-1$ divides the residue class degree of $p$ in $\mathbf{K} / \mathbb{Q}$. Since $2 n$ divides $p-1$, hence $2 n$ divides the residue class degree of $p$ in $\mathbf{K} / \mathbb{Q}$. But we have
$\mathbb{Q}(\sqrt{d}) \subset \mathbf{K}$ where $d$ is the discriminant of $P(X), \mathbf{K}$ is an unramified extension over $\mathbb{Q}(\sqrt{d})[8]$ and $[\mathbb{Q}(\sqrt{d}): \mathbb{Q}]=2$, then $n$ divides the class number of $\mathbb{Q}(\sqrt{d})$.
The proof of the infiniteness of the number of quadratic number fields for every natural number $n$ is similar Theorem 2.1.

## 3. Construction of Hilbert's Fields of Quadratic Fields

Let $P(X)=X^{n}-a X+b$ be a polynomial over $\mathbb{Z}$ such that $n b$ and $(n-1) a$ are relatively prime, $d$ be its discriminant, $h(\mathbb{Q}(\sqrt{d}))=h$ be the class number of $\mathbb{Q}(\sqrt{d})$ and $\mathbf{H}$ be the Hilbert's field of a quadratic field $\mathbf{k}=\mathbb{Q}(\sqrt{d})$.
We refer to [4] and we use the Maple's software, to get the following examples for $n=3$ and for small integers $a$ and $b$ :

$$
\begin{aligned}
& \left.a=1, b=1, d=-23, h=3, P(X)=X^{3}-X+1, \mathbf{H}=\mathbf{k}(\sqrt[3]{108+12 \sqrt{69}})\right) \\
& a=4, b=1, d=229, h=3, P(X)=X^{3}-4 X+1, \mathbf{H}=\mathbf{k}(\sqrt[3]{-108+12 \sqrt{-687}}) \\
& a=5, b=1, d=473, h=3, P(X)=X^{3}-5 X+1, \mathbf{H}=\mathbf{k}(\sqrt[3]{-108+12 \sqrt{-1419}}) \\
& a=2, b=3, d=-211, h=3, P(X)=X^{3}-2 X+3, \mathbf{H}=\mathbf{k}(\sqrt[3]{324+12 \sqrt{633}}) \\
& a=5, b=3, d=257, h=3, P(X)=X^{3}-8 X+9, \mathbf{H}=\mathbf{k}(\sqrt[3]{324+12 \sqrt{417}}) \\
& a=8, b=9, d=-139, h=3, P(X)=X^{3}-7 X+3, \mathbf{H}=\mathbf{k}(\sqrt[3]{972+12 \sqrt{417}}) .
\end{aligned}
$$

## References

[1] Cassels J. W.S. and Fröhlich A., Algebraic Number Theory, Academic Press, (1967).
[2] Honda T., On real quadratic fields whose class numbers are multiples of 3 , J , Reine Angew. Math. 233 (1968), 101-102.
[3] Kaplan P., Sur le 2-groupe des classes d'idéaux des corps quadratiques, J, Reine Angew. Math., 283/284 (1976), 313-363.
[4] Oriat B., Table des groupes des classes des corps quadratiques réels $\mathbb{Q}(\sqrt{d})$ et imaginaires $\mathbb{Q}(\sqrt{-d}), d<10000$, Faculté des Sciences de Besançon, (1974-1975).
[5] Ribenboim P.,, L'Arithmétique des corps, Hermann, Paris, (1972).
[6] Samuel P., Théorie algébrique des nombres, Hermann, Paris, (1971).
[7] Siegel C. L., Über einige anvendungen diophantisher aproximationen, Gesammelte abhandlungen band I, 209-266.
[8] Uchida, Unramified extensions of quadratic number fields, I, Tôhoku Math. J., 22 (1970).
[9] Washington L. C., Introduction to Cyclotomic Fields, Graduate Texts in Mathematics, 83 (1982), Springer-Verlag, New York.

