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Abstract

Let n be a given integer greater than 3, P(X) = X™ —aX +b a polynomial in Z[X],
where nb and (n — 1)a are relatively prime, and d be its discriminant. It was shown
by Uchida [8] that the splitting field of P(X) is unramified over Q(v/d).

In this paper we show in the situation above that we necessarily have d = 1 mod
4 for all n and that the converse is not true. In this case we show that there are
infinitely many square free integers d = 1 mod 4 that are not discriminant of poly-
nomials of type P(X). At the same time we get infinite quadratic fields whose class
numbers are divisible by a given prime number p (theorem 2.1). And at the end of
this paper we construct Hilbert’s fields of quadratic fields when n = 3. Unramified
means that every finite prime is unramified, and Hilbert’s field of a field means the
maximal unramified abelian extension of this field.

1. Introduction and Notations

Let K be a number field and L a subfield of K. Throughout this paper we denote :
Trg 1, : The trace of K/L.
Nk /1, : The norm of K/L.
h(K) : the class number of K.
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This work is a continuation of a work done by Uchida [8] who determined all splitting
fields of P(X) = X" —aX +b, a polynomial in Z[X] where nb and (n—1)a are relatively
prime and d be its discriminant for every number n greater than 3, and it turned out
they are unramified over Q(v/d).

In this paper we show in the situation above that we necessarily have d = 1 mod 4 for
all n and that the converse is not true. In this case we show that there are infinitely
many square free integers d = 1 mod 4 that are not discriminant of polynomials of
type P(X). At the same time we get infinite quadratic fields whose class numbers are
divisible by a given prime number p (theorem 2.1). And at the end of this paper we
construct Hilbert’s fields of quadratic fields when n = 3. Unramified means that every
finite prime is unramified, and Hilbert’s field of a field means the maximal unramified

abelian extension of this field.

2. Unramified Extensions Over Quadratic Fields
Proposition 2.1 : Let d be an integer, and assume that there exist n > 2, a, b in Z
such that d = (—1)n(n271)

we then get :

(n" ! — (n—1)""1a™) with nb and (n — 1)a relatively prime,

(—1)n(n2_1) (1 —=n), mod 8 if n is an even number and n > 4.
d= (—1)@11, mod 8 if n is an odd number and n > 4.

54 4a?, mod 8 if n = 3.

—4b + a?, mod 8 if n = 2.

Proof : If n =2, then d = —4b + a>.

If n = 3, then d = 4a® — 27b% with 2a and 3b relatively prime, therefore b2 = 1 mod 8,
so d = 5+ 4a® mod 8.

If n > 4, we then have n =1 or 0 mod 2.

e Assume n =1 mod 2, then n —1 =0 mod 2 and b= 1 mod 2, so b" ! =1 mod 8

n(n—1)
because n —1 > 3, hence d = (—1) 2 “ 0" mod 8.

Since n" = 1 mod 8 because n and 8 are relatively prime, then d = (=1)" 2 n

mod &.

e Assume n = 0 mod 2, then a = 1 mod 2, so a” = 1 mod 8, n™ = 0 mod 8 and

(n —1)" ! =n—1mod 8 because n > 4 and n — 1 and 8 are relatively prime,
n(n—1)

therefore d = (—1)" 2 (1 —n) mod 8.
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Corollary 1 : Let d be an integer, and assume that there exist n > 2, a, b integers
such that d = (—1)71(%1) (n"~! — (n —1)""1a™) with nb and (n — 1)a relatively prime,
we then get d = 1 mod 4.
Proof : If n=2o0rn =3, thend = —4b+a? = 1 or d = 5+ 4a® = 1 mod 4 respectively
(Proposition 2.1).
If n =0 mod 4 and n > 4, then (—1)n(n271) =1and 1 —n =1 mod 4, therefore d = 1
mod 4 (Proposition 2.1).
If n =2 mod 4 and n > 4, then (—1)% = —1 and 1 —n = —1 mod 4, therefore
d =1 mod 4 (Proposition 2.1).

n(n—1)

If n=1mod 4 and n > 4, then (—1)" 2 =1, therefore d =1 mod 4

(Proposition 2.1).
If n=—1 mod 4 and n > 4, then (—l)w = —1, therefore d =1 mod 4
(Proposition 2.1).

Corollary 2 : Let d be an integer, and assume that there exist n > 3, a, b in Z such
that d = (—1)n(n271)

then get :

(non=t — (n — 1) 1a™) with nb and (n — 1)a relatively prime, we

(1)d=1mod 8 <= (n=xlor0or2mod8ifn>4)or (a=1mod?2ifn=23).
(2)d=5mod 8 <= (n=+5o0ordor6mod8ifn>4)or (a=0mod2ifn=23).

Proof : Assume that n = 3.

From proposition 2.1, we then deduce :

d=5mod8 <= 4a®>=0 mod8
= a>=0 mod 2
<— a=0 mod 2
d=1mod8 <+ 4a®=-— mod 8
— 4ad = mod 8
= a’= mod 2
— a=1 mod 2

Assume that n > 4 and d = 1 mod 8, from proposition 2.1, we then deduce :

e If n =1 mod 4, then (_1)71(7;1) =1,n=1or 5mod 8 and d = n mod 8, therefore
n =1 mod 8.
e If n = 3 mod 4, then (_1)71(7;1) =—-1,n=3o0or —1 mod 8 and d = —n mod 8,

therefore n = —1 mod 8.
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e If n = 0 mod 4, then (—1)n(n271) =1, n=0o0r 4 mod 8 and d =1 —n mod 8,
therefore n = 0 mod 8.
e If n = 2 mod 4, then (—l)n(n2_1) =—-1,n=2o0r 6 mod 8 and d =n — 1 mod 8,

therefore n = 2 mod 8.

The converse is trivial.

Assume that n > 4 and d = 5 mod 8, from Proposition 2.1, we then deduce :

n(n—1)
2

e If n =1 mod 4, then (—1)
n =5 mod 8.

=1,n=1or 5mod 8 and d = n mod 8, therefore

n(n—1)
2

e If n =3 mod 4, then (—1)

therefore n = 3 mod 8.

=—-1,n=3or —1 mod 8 and d = —n mod 8§,

e If n = 0 mod 4, then (—1)n<n271> =1, n=0o0r 4 mod 8 and d =1 —n mod 8,
therefore n = 4 mod 8.
e If n = 2 mod 4, then (—1)n(n2_1) =—-1,n=2o0r 6 mod 8 and d =n — 1 mod 8,

therefore n = 6 mod 8.

The converse is trivial.

If d = 1 mod 4, then d = 1—4b with b € Z, therefore d is a discriminant of the polynomial
P(X) = X2~ X +b, and we have for all integers b, 2b and a = 1 are relatively prime.
Henceforth we assume that n > 3. And we wonder : 7 If for every square free integer
d = 1 mod 4, there exist n > 3, a and b € Z where nb and (n — 1)a are relatively prime
such that d = (—1)™ %2 (b1 — (n — 1)~ lam)? ”

Lemma 2.1 : Let P(X) = X" —aX + b be a polynomial in Z[X], with nb and (n—1)a
relatively prime, d an integer such that v/d ¢ Z, and «q, ..., o, the roots of P(X).

If P(X) splits completely in Q(v/d), then for every root a; that doesnot belong to Q,

there exists only one j € {1,...,n} such that a; + a;; € Z and o, € Z.

Proof : Since nb and (n — 1)a are relatively prime, then o; # «; for all i # j. Let o
be the Q-automorphism of Q(v/d) such that o(vd) = —Vd, and since P(X) € Z[X],
then o(a;) € {ai,...,a,} for all i € {1,...,n}, so there exists only one j € {1,...,n} such
that o(o) = ; therefore NQ(\/E)/Q(O‘i) = aio(a;) = aja; € Z and Trg g o(0) =
a;+o(a;) = a; +aj € Z.
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Corollary 3 : Let P(X) = X" —aX +b be a polynomial in Z[X], with nb and (n—1)a
relatively prime and d be an integer.

If n is an odd number and P(X) splits completely in Q(v/d), then P(X) has at least
one root in Z, dividing b.

Proof : If Vd € 7, the result is trivial.

Assume that v/d ¢ Z, and since n is an odd number and P(X) has all roots o, ...,
oy, that are all distinct, then P(X) has an odd number of roots. From Lemma 2.1,
we deduce there exits i € {1,...,n} such that o(oy) = a; (with o(v/d) = —V/d), hence
a; € Q, so a; € Z because «; is a root of P(X) € Z[X].

But ai(a?_l —a)=band a; € Z , then «; divides b.

Lemma 2.2 : Let d be an integer such that v/d € Z, and there exit n > 3, a,b € Z
such that d = (—1)n(n2_1)
prime, and P(X) has all roots ar, ..., o, in Q(v/d) we then get :

(n™b"~! — (n — 1) 1a™) where nb and (n — 1)a are relatively

(1) All roots are in Z except two of them, say a1, as.
(2) a1 — a; # (g — ;) for all i # j and 4,5 € {2,...,n}, and ¢ € Q(Vd).
(3) ag — oy # c(aa — aj) for all i # j and 4,5 € {2,...,n}.
(4) [T (a2 = aj)%(er — ay)® = 1.
3<

(5) aj —aj==+1forall 2 <i<jifn>4.
(6) Ozl—OQ::F\/g.

Proof : Let ¢ be a Q-automorphism of Q(v/d) such that o(vd) = —vd. We assume
that o; ¢ Q for all i € {1,...,m} ( m is an even number : m = 2m’ ) and «o; € Q for all
ie{m+1,..,n} withm<nand {m+1,...,n}=0if m =n.

From lemma 2.1, we get for all i € {1,....m'} s; = a;+ aj1py € Z and p; = @4y € Z,
then o; = w and ;= @. But Q(vd) = Q(ay) = Q(4 /s — 4dp;),
then 21/812 —4p; = n; + mivd with n; and m; # 0 are two numbers of the same
parity, so 4(s? — 4p;) = n? + 2nymivd + dm?, hence n;m; = 0, therefore n; = 0, and
\/512 — 4p; = m;\/a with m} € Z.

But for all i € {1,...,m'}, we have a; — iy = \/57 — dp; = m/d.
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Since d is the discriminant of P(X), and let H = {(i,i +m'),i = 1,...,m'}, then from

[8] we get :
d = [[(ai—ay)?
=
= H (i — Qien)? H (ai — aj)?
i=1 i<y
(4,5)¢H
= H m/Qd H —oz]

1<j
(4,5)¢H

~ o i 1T o
1<j

\W—/ (4,7)¢H
€L

ez
then m’ = 1 and m? = 1, therefore we deduce (1), (4), (5) and (6).

(2) If there exist ¢ € Q(v/d) and 2 < i < j such that a; — a; = c(1 — @) we then get
a; = aj if ¢ = 1 otherwise we have a1 € Q. The proof of (3) is similar to (2).
Proposition 2.2 : Let d be a square free integer such that h(Q(v/d)) = 1, then the

equality d = (_1)71(”271) (n"b"~1 — (n — 1)""1a™) does not hold for every integer n > 5,

a, b in Z with nb and (n — 1)a relatively prime.
n(n—1)
2

Proof : Assume there exist n > 5, a, b in Z such that d = (—1) (nmp"—1 —
(n — 1)""1a™) with nb and (n — 1)a relatively prime, then d is the discriminant of

P(X) = X"—aX 4+, d = H(O‘i — ozj)2 where «; are the roots of P(X) for all
i<j
i € {1,...,n} and the splitting field Q(«a, ..., @) of a polynomial P(X) = X" —aX +b

is an unramified extension over Q(v/d).
Since h(Q(V/d)) = 1, then Q(a, ..., o) = Q(V/d), so P(X) splits completely in Q(v/d).

If n > 5, from Lemma 2.2 we then get (for example) :
ag—ag=-1 (1)
a3 — 5 = -1 (2)
ag—as =1 (3)
because o; # o and a; —a; = £1 for all 2 <7 < j.
(1) = (2) <= a4 — a5 = 2 <= 2 = —1 which is impossible.
Proposition 2.3 : Let d be the discriminant of the equation P(X) = X" —aX + b

where nb and (n — 1)a are relatively prime, we then get :

Vd € Q <= P(X) splits completely in Q.
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Proof : Since d is the discriminant of the equation P(X) = X" —aX + b where nb and
(n — 1)a are relatively prime, we then get d = H(O‘i — a;)* where «; are the roots of
P(X) for all i € {1,...,n} and Q(aq, ..., ap) is a:imramiﬁed extension of Q(v/d) [8].

If vd € Q, then Q(vd) = Q, so Q(ar, ..., ay,) = Q, therefore a; € Q for all i € {1,...,n}.
The converse is trivial.

Lemma 2.3 : Let d be an integer, n > 3, and p a prime number.

If p is a common divisor of n and d, then there are no a, b in Z such that d =

n(n—1)
(=1)" = : (™" ! — (n — 1)""1a™) where nb and (n — 1)a are relatively prime.

Proof : Assume that there exist n > 3, a, b in Z such that d = (—1)n(n2_1) (n"p" 1 —

(n —1)""ta™) where nb and (n — 1)a are relatively prime. Since p divides n and d, then
p" divides n™, so p divides a™ because p is relatively prime with n — 1, hence p divides
a, this is a contradiction with nb and (n — 1)a relatively prime.

Remark 1 : If d = (—1)@(71”1)”_1 — (n — 1)"1a™) where nb and (n — 1)a are
relatively prime, then d is relatively prime with n, n — 1, a and b.

Proposition 2.4 : Let P(X) = X" —aX +b € Z[X] where nb and (n—1)a are relatively

prime, d the discriminant of P(X), and a,..., ay, the roots of P(X), we then get :

(1) P(X) has at most two roots in Z dividing b. If P(X) has two roots (for example

ap and ag), then a3 — ag = +1.

(2) P(X) does not have roots in Q(v/d) or it has exactly two roots in Q(v/d) — Q (for

example a1 and «ag), in this case we then get :

H (Ozi — Oéj)2 = 1.

i<j
(4,7)#(1,2)
o] — Qg = :F\/g.

The proof of this proposition relies on Lemma 2.2.
Corollary 4 : Let d be a discriminant of a polynomial P(X) = X% —aX + b in Z[X]
where 4b and 3a are relatively prime, then P(X) does not have roots in Q(v/d) or has

exactly one root in Z.
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Proof : Assume that P(X) has a root in Q(v/d) — Q, then P(X) has two roots in

Q(vd) — Q ( for example a1 and as ) and two roots in Z dividing b (for example asz

and ay) such that H ((a1 — ;) (a2 — @;))* = 1 (Proposition 2.4). But a; and as
3<j<4

are conjugate, then oy — «j and oy — «; are conjugate too and are integers in Q(Va),

therefore (a1 — o) (a2 — o) = ajz — (o1 + a2)oj + ajag = %1, hence «; ( for j = 3 and

j = 4) are solutions of the equation X2 — (o +ag) X +ajas— (1) = 0, and since o and
s are solutions of the equation X2 — (a1 + ag) X + ajas = 0, then a1 + ag = a3z + ay,
ajag — (£1) = agay and
P(X) = (X% — (a1 + )X +a100)(X? — (a1 + a2) X + aag — (£1))
= X4 — 2(041 + OQ)XS + (2&1(12 — (:l:l) -+ (011 -+ QQ)Q)X2
— (o1 4+ @)(2a1a — (£1)) X + ara(a1az — (£1))
we deduce that :

a1 +as =0 (1)
20100 — (£1) + (a1 +a2)?2 =0 (2)
a1 + a2)(2agan — (£1) =4 (3)
051052(041042 — (:l:l)) =b (4)

From (1) we have oy = —ag, we then substitute in (2), we obtain o = £3, which is in
contradiction with aq integer in Q(v/d). We deduce that P(X) does not have roots in
Q(Vd).
Since deg(P) = 4, then by Proposition 2.4, we get P(X) has two roots in Q(v/d) — Q if
only if P(X) has two roots in Z.
Proposition 2.5 : Let p be a prime number, n be an integer such that p =1 mod n—1
and P(X) = X" —aX + b a polynomial in Z[X]| where nb and (n — 1)a are relatively
prime, we then get :

(1) If p divides b and the order of a is n — 1 modulo p, then P(X) is either irreducible

over Q or has irreducible factors of degree 1 and degree (n — 1), in such case it is

reducible over Q.

(2) If p is relatively prime with b, n = p and a = 1 mod p, then P(X) is irreducible
over Q.
Proof : (1) If p divides b, we then get :
PX)=X"—aX+b=XX""!—-a)mod p
Recall that Z/pZ contains all (n — 1)-th roots of unity, because p is a prime number

such that n — 1 divides p — 1. But, X"~! — @ is irreducible over Z/pZ if and only if
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a is a primitive root mod p ( Kummer’s theorem ). In our case we have a relatively
prime with p because p divides b, and nb and (n — 1)a are relatively prime, hence a is
a primitive root mod p, then X"~ ! — @ is irreducible over Z/pZ. Therefore we get 1).
(2) We assume that p is relatively prime with b and ¢ = 1 mod p, then P(X) = XP—X+b
mod p. By Artin Schreier’s theorem [5], we deduce that P(X) is irreducible over Z/pZ
if and only if P(X) does not have roots in Z/pZ. In our case, it is easy to see that P(X)
does not have roots in Z/pZ, therefore P(X) is irreducible over Z/pZ, and then over Q.
Proposition 2.6 : Let p be a prime number, d a discriminant of a polynomial P(X) =
XP — aX + b in Z[X] where pb and (p — 1)a are relatively prime, and h(Q(V/d)) = p.
P(X) is reducible over Q(v/d) if only if P(X) splits completely in Q(v/d).

Proof : <) Is trivial.

=) Let aj,..., a;, be the roots of P(X) = X? —aX + b. Assume that there exists ¢ €
{1,...,p} such that a; ¢ Q(v/d). Since Q(v/d) C Q(Vd, a;) C Q(ar, e 0p), Qag, ..., o)
is an unramified extension over Q(v/d), and [Q(Vd, ;) : Q(V/d)] > 1 divides p, then
[Q(Vd, o) : Q(v/d)] = p, so P(X) is a minimal polynomial of o; over Q(v/d), therefore
P(X) is irreducible over Q(v/d).

Corollary 5 : Let p be a prime number, d a discriminant of a polynomial P(X) =
XP — aX + b in Z[X] where pb and (p — 1)a are relatively prime, and h(Q(vd)) = p,
then P(X) is irreducible over Q or P(X) splits completely in Q(v/d).

Corollary 6: Let d be a discriminant of a polynomial P(X) = X" — aX + b in Z[X]
where nb and (n — 1)a are relatively prime, we then get :

If n > 4 then h(Q(Vd)) > 2.

The proof of this corollary relies on Proposition 2.4 and Corollary 4.

Proposition 2.7 : Let P(X) = X3 —aX +b be a polynomial in Z[X] where 3b and 2a

are relatively prime, and d be its discriminant, we then get :

If P(X) has a root ¢ in Z, then

92 — d = +4
tla—t?) = b
—3t2+4a = d

Proof : If P(X) has a root ¢ in Z, we then deduce from proposition 2.4 and 2.5 that
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P(X) has two roots a; and ay in Q(v/d) — Q such that

a1 — Qg = :|:\/C>Z

(t — Oél)(t — 042) =41

P(X)=(X —t)(X2+tX +t>—a)
—3t3+4a=d

tla—t*) =0

Therefore o1 and am are roots of the equation X2 +tX +t2—a =0, so o = %‘/& and

a9 = _t%\/a, hence

(t—a1)(t —ag) = +1 = 3oVddidd _ 4
— 9t —d=44

We then deduce that

9t2 — d = 44
tla—t?) = b
—3t2+4a = d

Corollary 7 : Let P(X) = X3 —aX +b be a polynomial in Z[X] where 3b and 2a are
relatively prime, and d be its discriminant, we then get :

If h(Q(v/d)) = 1, then d = 5 mod 8 and is a prime number.

Proof : Assume that h(Q(v/d)) = 1. Since d is the discriminant of the polynomial
P(X) = X3 —aX + b € Z[X] where 3b and 2a are relatively prime, then P(X) splits
completely in Q(v/d). From Proposition 2.4 and 2.6, there exists an odd number t
such that 9t> —d = +4. As t is an odd number, then t*> = 1 mod 8. By the formula
9t2 — d = +4 we deduce d = 1 — (+4) = 5 mod 8.

If d is not a prime number, then by [3], we get h(Q(+v/d)) > 1.

Corollary 8 : Let d = 1 mod 4 be a square free integer for which there exist a and b
in Z such that d = 4a3 — 27b? where 3b and 2a are relatively prime.

If h(Q(v/d)) = 1 then d = 5 or there exists an odd number ¢ such that

9t2 4 4 = d
tla—t?) = b
—3t24+4a = d

Proof : Let d = 1 mod 4 be a square free integer such that h(Q(v/d)) = 1. We assume
that there exist a and b in Z such that d = 4a® — 27b% where 3b and 2a are relatively

prime. We refer to Proposition 2.6 and Corollary 7, we then get :
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d is a prime number and there exists an odd number ¢ such that

92+ (+4) = =+d
tla—t?) = b
~3t2+4a = d

But we have :

G —4=d < (Bt-2)(3t+2)=d
<— (Bt—2=1land3t+2=d)or (3t—2=—-dand 3t+2=—1)
— d=5

Remark 2 : The converse of Corollary 8 is not in general true : There exist a square
free integer d, a and b in Z such that d = 4a® — 27b? where 3b and 2a are relatively

prime, and an odd number ¢ such that

9t + 4 = d
tla—t?) = b
—3t24+4a = d

But 2(Q(Vd)) > 1.

Example 1 : We refer to [4] and we use the Maple’s software, to deduce the following
examples :

a=76,b=2551t=5d=229 P(X)= (X —5)(X%2+5X —51),h(Q(+/229)) = 3
a=244,b=1467,t = 9,d = 733, P(X) = (X — 9)(X? + 9X — 163), h(Q(+/229)) = 3
a=364,b=2673,t =11,d = 1093, P(X) = (X — 11)(X2 + 11X — 243),

hQ(v229)) = 5

Corollary 9 : For all non prime square free integers d = 1 mod 8 or d = 5 mod 8 such
that h(Q(vd)) = 1, the equality d = (—1)n<nn71> (n" =1 — (n — 1) 1a™) does not hold

for n > 3, a and b in Z where nb and (n — 1)a are relatively prime.

The proof of this corollary relies on Corollary 7.

Theorem 2.1 : Let p be a prime number, then there exist infinitely many quadratic
fields Q(v/d) with class number divisible by p, where d = (—1) pe) (p? — (p—1)P~DgP)
and p is relatively prime with a if p #£ 2.

Proof : If p = 2, we consider the quadratic field Q(v/qq’) where ¢ and ¢’ are two
distinct prime numbers such that ¢ = ¢’ = 1 mod 4. It is easy to see that Q(,/q, V¢') is

an unramified extension over Q(1/qq’), therefore there exist infinitely many quadratic

fields with class number divisible by 2.
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If p > 2, we consider P(X) = XP—aX +1 € Z[X] with a = 1 mod p, then (p—1)a and p
are relatively prime, and P(X) = X? — X + 1 in Z/pZ[X]. By Artin Schreier’s theorem,
we deduce that P(X) is irreducible over Z/pZ if and only if P(X) does not have roots
in Z/pZ. In our case, it is easy to see that P(X) does not have roots in Z/pZ, therefor
p is unramified in the splitting field denoted K of a polynomial P(X) and divides the
residue class degree of p in K/Q. Since p is an odd number, Q(\/@ C K where d is
the discriminant of P(X) and K is an unramified extension over Q(+/d) [8], therefore p
divides the class number of Q(v/d).

It seems that there exist infinitely many numbers ¢ = 1 mod p such that p divides the
class number of Q(v/d) with d is a discriminant of P(X) = X? —aX +1. Let ag be one of
such numbers, and dy be a discriminant of P(X) = X? — aqpX + 1. We claim that there
are only finite numbers of a’s with Q(v/d) = Q(v/dp). Indeed, since Q(v/d) = Q(v/dp),
then there exist an integer m such that d = m?2dy, hence m?(p? — (p — 1)P"1ah) =
pP — (p — 1)P~1aP, therefore the pair (m,a) is an integral solution of the Diophantine
equation

P —(p— P a)Y? = —(p— 1)P ' XP + pP. (1)

Since there exist only a finite number of integral solutions of (1) by Siegel’s theorem,
therefore there exist infinitely many quadratic fields with class number divisible by p.
In the two cases we have shown that for every prime number p there exist infinitely
many quadratic fields with class number divisible by p.

Remark 3 : Theorem 2.1 is considered as a sort of generalization of Honda [2], where
the case p = 3 is treated.

Theorem 2.2 : Let n be a given a number greater than 2, then there exist infinitely
many quadratic fields with class number divisible by n.

Proof : If n =2, Theorem 2.1.

If n > 2, we refer to Dirichlet’s theorem [9], we deduce that there exists a prime number
p such that p = 1 mod 2n. We consider P(X) = XP — aX + b € Z[X] with p divides
b, (p — 1)a and pb are relatively prime, d its discriminant and the order of a is equal
to p — 1. From Proposition 2.5 we get P(X) = X(XP~! —a) in Z/pZ[X], XP~! —a
is irreducible over Z/pZ, therefore p is unramified in the splitting field denoted K of
a polynomial P(X) and p — 1 divides the residue class degree of p in K/Q. Since 2n
divides p — 1, hence 2n divides the residue class degree of p in K/Q. But we have
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Q(vd) C K where d is the discriminant of P(X), K is an unramified extension over
Q(Vd) [8] and [Q(v/d) : Q] = 2, then n divides the class number of Q(v/d).
The proof of the infiniteness of the number of quadratic number fields for every natural

number n is similar Theorem 2.1.

3. Construction of Hilbert’s Fields of Quadratic Fields
Let P(X) = X" —aX +b be a polynomial over Z such that nb and (n—1)a are relatively
prime, d be its discriminant, h(Q(v/d)) = h be the class number of Q(v/d) and H be
the Hilbert’s field of a quadratic field k = Q(\/d).
We refer to [4] and we use the Maple’s software, to get the following examples for n = 3
and for small integers a and b :
a=1,b=1,d=-23h=3,P(X)= X3~ X +1, H:k(3 108+12\/@))
a=4,b=1,d=229h=3P(X)=X3—4X +1,H= k(%/—108+ 12@)
a=5b=1,d=473,h=3,P(X)=X?—5X +1, H= k(%/—108+ 12\/T419)
a=2b=3d=-211,h=3 P(X)=X?—2X +3, H:k(3 324+12\/@)
a=5b=3d=257h=3P(X)=X>—8X +9, H:k(g 324+12¢m)

a=8b=9d=—139,h=3,P(X) = X3 —7X +3, H:k<\3/972+12\/4 7).
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