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Abstract

Let n be a given integer greater than 3, P (X) = Xn−aX+b a polynomial in Z[X],
where nb and (n−1)a are relatively prime, and d be its discriminant. It was shown
by Uchida [8] that the splitting field of P (X) is unramified over Q(

√
d).

In this paper we show in the situation above that we necessarily have d ≡ 1 mod
4 for all n and that the converse is not true. In this case we show that there are
infinitely many square free integers d ≡ 1 mod 4 that are not discriminant of poly-
nomials of type P (X). At the same time we get infinite quadratic fields whose class
numbers are divisible by a given prime number p (theorem 2.1). And at the end of
this paper we construct Hilbert’s fields of quadratic fields when n = 3. Unramified
means that every finite prime is unramified, and Hilbert’s field of a field means the
maximal unramified abelian extension of this field.

1. Introduction and Notations

Let K be a number field and L a subfield of K. Throughout this paper we denote :

TrK/L : The trace of K/L.

NK/L : The norm of K/L.

h(K) : the class number of K.
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This work is a continuation of a work done by Uchida [8] who determined all splitting

fields of P (X) = Xn−aX+b, a polynomial in Z[X] where nb and (n−1)a are relatively

prime and d be its discriminant for every number n greater than 3, and it turned out

they are unramified over Q(
√
d).

In this paper we show in the situation above that we necessarily have d ≡ 1 mod 4 for

all n and that the converse is not true. In this case we show that there are infinitely

many square free integers d ≡ 1 mod 4 that are not discriminant of polynomials of

type P (X). At the same time we get infinite quadratic fields whose class numbers are

divisible by a given prime number p (theorem 2.1). And at the end of this paper we

construct Hilbert’s fields of quadratic fields when n = 3. Unramified means that every

finite prime is unramified, and Hilbert’s field of a field means the maximal unramified

abelian extension of this field.

2. Unramified Extensions Over Quadratic Fields

Proposition 2.1 : Let d be an integer, and assume that there exist n ≥ 2, a, b in Z
such that d = (−1)

n(n−1)
2 (nnbn−1− (n− 1)n−1an) with nb and (n− 1)a relatively prime,

we then get :

d ≡


(−1)

n(n−1)
2 (1− n), mod 8 if n is an even number and n ≥ 4.

(−1)
n(n−1)

2 n, mod 8 if n is an odd number and n ≥ 4.
5 + 4a3, mod 8 if n = 3.
−4b+ a2, mod 8 if n = 2.

Proof : If n = 2, then d = −4b+ a2.

If n = 3, then d = 4a3 − 27b2 with 2a and 3b relatively prime, therefore b2 ≡ 1 mod 8,

so d ≡ 5 + 4a3 mod 8.

If n ≥ 4, we then have n ≡ 1 or 0 mod 2.

• Assume n ≡ 1 mod 2, then n− 1 ≡ 0 mod 2 and b ≡ 1 mod 2, so bn−1 ≡ 1 mod 8

because n− 1 ≥ 3, hence d ≡ (−1)
n(n−1)

2 nn mod 8.

Since nn ≡ 1 mod 8 because n and 8 are relatively prime, then d ≡ (−1)
n(n−1)

2 n

mod 8.

• Assume n ≡ 0 mod 2, then a ≡ 1 mod 2, so an ≡ 1 mod 8, nn ≡ 0 mod 8 and

(n − 1)n−1 ≡ n − 1 mod 8 because n ≥ 4 and n − 1 and 8 are relatively prime,

therefore d ≡ (−1)
n(n−1)

2 (1− n) mod 8.
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Corollary 1 : Let d be an integer, and assume that there exist n ≥ 2, a, b integers

such that d = (−1)
n(n−1)

2 (nnbn−1− (n− 1)n−1an) with nb and (n− 1)a relatively prime,

we then get d ≡ 1 mod 4.

Proof : If n = 2 or n = 3, then d ≡ −4b+a2 ≡ 1 or d ≡ 5+4a3 ≡ 1 mod 4 respectively

(Proposition 2.1).

If n ≡ 0 mod 4 and n ≥ 4, then (−1)
n(n−1)

2 = 1 and 1 − n ≡ 1 mod 4, therefore d ≡ 1

mod 4 (Proposition 2.1).

If n ≡ 2 mod 4 and n ≥ 4, then (−1)
n(n−1)

2 = −1 and 1 − n ≡ −1 mod 4, therefore

d ≡ 1 mod 4 (Proposition 2.1).

If n ≡ 1 mod 4 and n ≥ 4, then (−1)
n(n−1)

2 = 1, therefore d ≡ 1 mod 4

(Proposition 2.1).

If n ≡ −1 mod 4 and n ≥ 4, then (−1)
n(n−1)

2 = −1, therefore d ≡ 1 mod 4

(Proposition 2.1).

Corollary 2 : Let d be an integer, and assume that there exist n ≥ 3, a, b in Z such

that d = (−1)
n(n−1)

2 (nnbn−1 − (n− 1)n−1an) with nb and (n− 1)a relatively prime, we

then get :

(1) d ≡ 1 mod 8 ⇐⇒ ( n ≡ ±1 or 0 or 2 mod 8 if n ≥ 4 ) or ( a ≡ 1 mod 2 if n = 3).

(2) d ≡ 5 mod 8 ⇐⇒ ( n ≡ ±5 or 4 or 6 mod 8 if n ≥ 4 ) or ( a ≡ 0 mod 2 if n = 3 ).

Proof : Assume that n = 3.

From proposition 2.1, we then deduce :
d ≡ 5 mod 8 ⇐⇒ 4a3 ≡ 0 mod 8

⇐⇒ a3 ≡ 0 mod 2
⇐⇒ a ≡ 0 mod 2

d ≡ 1 mod 8 ⇐⇒ 4a3 ≡ −4 mod 8
⇐⇒ 4a3 ≡ 4 mod 8
⇐⇒ a3 ≡ 1 mod 2
⇐⇒ a ≡ 1 mod 2

Assume that n ≥ 4 and d ≡ 1 mod 8, from proposition 2.1, we then deduce :

• If n ≡ 1 mod 4, then (−1)
n(n−1)

2 = 1, n ≡ 1 or 5 mod 8 and d ≡ n mod 8, therefore

n ≡ 1 mod 8.

• If n ≡ 3 mod 4, then (−1)
n(n−1)

2 = −1, n ≡ 3 or −1 mod 8 and d ≡ −n mod 8,

therefore n ≡ −1 mod 8.
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• If n ≡ 0 mod 4, then (−1)
n(n−1)

2 = 1, n ≡ 0 or 4 mod 8 and d ≡ 1 − n mod 8,

therefore n ≡ 0 mod 8.

• If n ≡ 2 mod 4, then (−1)
n(n−1)

2 = −1, n ≡ 2 or 6 mod 8 and d ≡ n − 1 mod 8,

therefore n ≡ 2 mod 8.

The converse is trivial.

Assume that n ≥ 4 and d ≡ 5 mod 8, from Proposition 2.1, we then deduce :

• If n ≡ 1 mod 4, then (−1)
n(n−1)

2 = 1, n ≡ 1 or 5 mod 8 and d ≡ n mod 8, therefore

n ≡ 5 mod 8.

• If n ≡ 3 mod 4, then (−1)
n(n−1)

2 = −1, n ≡ 3 or −1 mod 8 and d ≡ −n mod 8,

therefore n ≡ 3 mod 8.

• If n ≡ 0 mod 4, then (−1)
n(n−1)

2 = 1, n ≡ 0 or 4 mod 8 and d ≡ 1 − n mod 8,

therefore n ≡ 4 mod 8.

• If n ≡ 2 mod 4, then (−1)
n(n−1)

2 = −1, n ≡ 2 or 6 mod 8 and d ≡ n − 1 mod 8,

therefore n ≡ 6 mod 8.

The converse is trivial.

If d ≡ 1 mod 4, then d = 1−4b with b ∈ Z, therefore d is a discriminant of the polynomial

P (X) = X2 −X + b, and we have for all integers b, 2b and a = 1 are relatively prime.

Henceforth we assume that n ≥ 3. And we wonder : ” If for every square free integer

d ≡ 1 mod 4, there exist n ≥ 3, a and b ∈ Z where nb and (n− 1)a are relatively prime

such that d = (−1)
n(n−1)

2 (nnbn−1 − (n− 1)n−1an)? ”

Lemma 2.1 : Let P (X) = Xn−aX + b be a polynomial in Z[X], with nb and (n− 1)a

relatively prime, d an integer such that
√
d 6∈ Z, and α1, ..., αn the roots of P (X).

If P (X) splits completely in Q(
√
d), then for every root αi that doesnot belong to Q,

there exists only one j ∈ {1, ..., n} such that αi + αj ∈ Z and αiαj ∈ Z.

Proof : Since nb and (n − 1)a are relatively prime, then αi 6= αj for all i 6= j. Let σ

be the Q-automorphism of Q(
√
d) such that σ(

√
d) = −

√
d, and since P (X) ∈ Z[X],

then σ(αi) ∈ {α1, ..., αn} for all i ∈ {1, ..., n}, so there exists only one j ∈ {1, ..., n} such

that σ(αi) = αj ; therefore NQ(
√

d)/Q(αi) = αiσ(αi) = αiαj ∈ Z and TrQ(
√

d)/Q(αi) =

αi + σ(αi) = αi + αj ∈ Z.
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Corollary 3 : Let P (X) = Xn−aX+ b be a polynomial in Z[X], with nb and (n−1)a

relatively prime and d be an integer.

If n is an odd number and P (X) splits completely in Q(
√
d), then P (X) has at least

one root in Z, dividing b.

Proof : If
√
d ∈ Z, the result is trivial.

Assume that
√
d 6∈ Z, and since n is an odd number and P (X) has all roots α1, ...,

αn that are all distinct, then P (X) has an odd number of roots. From Lemma 2.1,

we deduce there exits i ∈ {1, ..., n} such that σ(αi) = αi (with σ(
√
d) = −

√
d), hence

αi ∈ Q, so αi ∈ Z because αi is a root of P (X) ∈ Z[X].

But αi(αn−1
i − a) = b and αi ∈ Z , then αi divides b.

Lemma 2.2 : Let d be an integer such that
√
d 6∈ Z, and there exit n ≥ 3, a, b ∈ Z

such that d = (−1)
n(n−1)

2 (nnbn−1 − (n− 1)n−1an) where nb and (n− 1)a are relatively

prime, and P (X) has all roots α1, ..., αn in Q(
√
d) we then get :

(1) All roots are in Z except two of them, say α1, α2.

(2) α1 − αi 6= c(α1 − αj) for all i 6= j and i, j ∈ {2, ..., n}, and c ∈ Q(
√
d).

(3) α2 − αi 6= c(α2 − αj) for all i 6= j and i, j ∈ {2, ..., n}.

(4)
∏
3≤j

(α2 − αj)2(α1 − αj)2 = 1.

(5) αi − αj = ±1 for all 2 < i < j if n ≥ 4.

(6) α1 − α2 = ∓
√
d.

Proof : Let σ be a Q-automorphism of Q(
√
d) such that σ(

√
d) = −

√
d. We assume

that αi 6∈ Q for all i ∈ {1, ...,m} ( m is an even number : m = 2m′ ) and αi ∈ Q for all

i ∈ {m+ 1, ..., n} with m ≤ n and {m+ 1, ..., n} = ∅ if m = n.

From lemma 2.1, we get for all i ∈ {1, ...,m′} si = αi +αi+m′ ∈ Z and pi = αiαi+m′ ∈ Z,

then αi = −si+
√

s2
i−4pi

2 and αi+m′ = si+
√

s2
i−4pi

2 . But Q(
√
d) = Q(αi) = Q(

√
s2i − 4pi),

then 2
√
s2i − 4pi = ni + mi

√
d with ni and mi 6= 0 are two numbers of the same

parity, so 4(s2i − 4pi) = n2
i + 2nimi

√
d + dm2

i , hence nimi = 0, therefore ni = 0, and√
s2i − 4pi = m′i

√
d with m′i ∈ Z.

But for all i ∈ {1, ...,m′}, we have αi − αi+m′ =
√
s2i − 4pi = m′i

√
d.
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Since d is the discriminant of P (X), and let H = {(i, i + m′), i = 1, ...,m′}, then from

[8] we get :

d =
∏
i<j

(αi − αj)2

=
i=m′∏
i=1

(αi − αi+m′)2
∏
i<j

(i,j)6∈H

(αi − αj)2

=
i=m′∏
i=1

m′i
2
d
∏
i<j

(i,j)6∈H

(αi − αj)2

= dm′
i=m′∏
i=1

m′i
2

︸ ︷︷ ︸
∈Z

∏
i<j

(i,j)6∈H

(αi − αj)2

︸ ︷︷ ︸
∈Z

then m′ = 1 and m2
1 = 1, therefore we deduce (1), (4), (5) and (6).

(2) If there exist c ∈ Q(
√
d) and 2 < i < j such that α1 − αi = c(α1 − αj) we then get

αi = αj if c = 1 otherwise we have α1 ∈ Q. The proof of (3) is similar to (2).

Proposition 2.2 : Let d be a square free integer such that h(Q(
√
d)) = 1, then the

equality d = (−1)
n(n−1)

2 (nnbn−1 − (n− 1)n−1an) does not hold for every integer n ≥ 5,

a, b in Z with nb and (n− 1)a relatively prime.

Proof : Assume there exist n ≥ 5, a, b in Z such that d = (−1)
n(n−1)

2 (nnbn−1 −
(n − 1)n−1an) with nb and (n − 1)a relatively prime, then d is the discriminant of

P (X) = Xn − aX + b, d =
∏
i<j

(αi − αj)2 where αi are the roots of P (X) for all

i ∈ {1, ..., n} and the splitting field Q(α1, ..., αn) of a polynomial P (X) = Xn − aX + b

is an unramified extension over Q(
√
d).

Since h(Q(
√
d)) = 1, then Q(α1, ..., αn) = Q(

√
d), so P (X) splits completely in Q(

√
d).

If n ≥ 5, from Lemma 2.2 we then get (for example) :
α3 − α4 = −1 (1)
α3 − α5 = −1 (2)
α4 − α5 = 1 (3)

because αi 6= αj and αi − αj = ±1 for all 2 < i < j.

(1)− (2)⇐⇒ α4 − α5 = 2⇐⇒ 2 = −1 which is impossible.

Proposition 2.3 : Let d be the discriminant of the equation P (X) = Xn − aX + b

where nb and (n− 1)a are relatively prime, we then get :
√
d ∈ Q⇐⇒ P (X) splits completely in Q.
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Proof : Since d is the discriminant of the equation P (X) = Xn− aX + b where nb and

(n − 1)a are relatively prime, we then get d =
∏
i<j

(αi − αj)2 where αi are the roots of

P (X) for all i ∈ {1, ..., n} and Q(α1, ..., αn) is an unramified extension of Q(
√
d) [8].

If
√
d ∈ Q, then Q(

√
d) = Q, so Q(α1, ..., αn) = Q, therefore αi ∈ Q for all i ∈ {1, ..., n}.

The converse is trivial.

Lemma 2.3 : Let d be an integer, n ≥ 3, and p a prime number.

If p is a common divisor of n and d, then there are no a, b in Z such that d =

(−1)
n(n−1)

2 (nnbn−1 − (n− 1)n−1an) where nb and (n− 1)a are relatively prime.

Proof : Assume that there exist n ≥ 3, a, b in Z such that d = (−1)
n(n−1)

2 (nnbn−1 −
(n− 1)n−1an) where nb and (n− 1)a are relatively prime. Since p divides n and d, then

pn divides nn, so p divides an because p is relatively prime with n− 1, hence p divides

a, this is a contradiction with nb and (n− 1)a relatively prime.

Remark 1 : If d = (−1)
n(n−1)

2 (nnbn−1 − (n − 1)n−1an) where nb and (n − 1)a are

relatively prime, then d is relatively prime with n, n− 1, a and b.

Proposition 2.4 : Let P (X) = Xn−aX+b ∈ Z[X] where nb and (n−1)a are relatively

prime, d the discriminant of P (X), and α1,..., αn the roots of P (X), we then get :

(1) P (X) has at most two roots in Z dividing b. If P (X) has two roots (for example

α1 and α2), then α1 − α2 = ±1.

(2) P (X) does not have roots in Q(
√
d) or it has exactly two roots in Q(

√
d)−Q (for

example α1 and α2), in this case we then get :

∏
i<j

(i,j)6=(1,2)

(αi − αj)2 = 1.

α1 − α2 = ∓
√
d.

The proof of this proposition relies on Lemma 2.2.

Corollary 4 : Let d be a discriminant of a polynomial P (X) = X4 − aX + b in Z[X]

where 4b and 3a are relatively prime, then P (X) does not have roots in Q(
√
d) or has

exactly one root in Z.
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Proof : Assume that P (X) has a root in Q(
√
d) − Q, then P (X) has two roots in

Q(
√
d) − Q ( for example α1 and α2 ) and two roots in Z dividing b (for example α3

and α4) such that
∏

3≤j≤4

((α1 − αj)(α2 − αj))2 = 1 (Proposition 2.4). But α1 and α2

are conjugate, then α1 − αj and α2 − αj are conjugate too and are integers in Q(
√
d),

therefore (α1−αj)(α2−αj) = α2
j − (α1 +α2)αj +α1α2 = ±1, hence αj ( for j = 3 and

j = 4) are solutions of the equation X2−(α1+α2)X+α1α2−(±1) = 0, and since α1 and

α2 are solutions of the equation X2 − (α1 + α2)X + α1α2 = 0, then α1 + α2 = α3 + α4,

α1α2 − (±1) = α3α4 and
P (X) = (X2 − (α1 + α2)X + α1α2)(X2 − (α1 + α2)X + α1α2 − (±1))

= X4 − 2(α1 + α2)X3 + (2α1α2 − (±1) + (α1 + α2)2)X2

− (α1 + α2)(2α1α2 − (±1))X + α1α2(α1α2 − (±1))
we deduce that :

α1 + α2 = 0 (1)
2α1α2 − (±1) + (α1 + α2)2 = 0 (2)
α1 + α2)(2α1α2 − (±1) = 4 (3)
α1α2(α1α2 − (±1)) = b (4)

From (1) we have α1 = −α2, we then substitute in (2), we obtain α2
1 = ±1

2 , which is in

contradiction with α1 integer in Q(
√
d). We deduce that P (X) does not have roots in

Q(
√
d).

Since deg(P ) = 4, then by Proposition 2.4, we get P (X) has two roots in Q(
√
d)−Q if

only if P (X) has two roots in Z.

Proposition 2.5 : Let p be a prime number, n be an integer such that p ≡ 1 mod n−1

and P (X) = Xn − aX + b a polynomial in Z[X] where nb and (n − 1)a are relatively

prime, we then get :

(1) If p divides b and the order of a is n− 1 modulo p, then P (X) is either irreducible

over Q or has irreducible factors of degree 1 and degree (n− 1), in such case it is

reducible over Q.

(2) If p is relatively prime with b, n = p and a ≡ 1 mod p, then P (X) is irreducible

over Q.

Proof : (1) If p divides b, we then get :

P (X) = Xn − aX + b ≡ X(Xn−1 − a)mod p

Recall that Z/pZ contains all (n − 1)-th roots of unity, because p is a prime number

such that n − 1 divides p − 1. But, Xn−1 − a is irreducible over Z/pZ if and only if
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a is a primitive root mod p ( Kummer’s theorem ). In our case we have a relatively

prime with p because p divides b, and nb and (n − 1)a are relatively prime, hence a is

a primitive root mod p, then Xn−1 − a is irreducible over Z/pZ. Therefore we get 1).

(2) We assume that p is relatively prime with b and a ≡ 1 mod p, then P (X) ≡ Xp−X+b

mod p. By Artin Schreier’s theorem [5], we deduce that P (X) is irreducible over Z/pZ
if and only if P (X) does not have roots in Z/pZ. In our case, it is easy to see that P (X)

does not have roots in Z/pZ, therefore P (X) is irreducible over Z/pZ, and then over Q.

Proposition 2.6 : Let p be a prime number, d a discriminant of a polynomial P (X) =

Xp − aX + b in Z[X] where pb and (p− 1)a are relatively prime, and h(Q(
√
d)) = p.

P (X) is reducible over Q(
√
d) if only if P (X) splits completely in Q(

√
d).

Proof : ⇐=) Is trivial.

=⇒) Let α1,..., αp be the roots of P (X) = Xp − aX + b. Assume that there exists i ∈
{1, ..., p} such that αi 6∈ Q(

√
d). Since Q(

√
d) ⊂ Q(

√
d, αi) ⊂ Q(α1, ..., αp), Q(α1, ..., αp)

is an unramified extension over Q(
√
d), and [Q(

√
d, αi) : Q(

√
d)] > 1 divides p, then

[Q(
√
d, αi) : Q(

√
d)] = p, so P (X) is a minimal polynomial of αi over Q(

√
d), therefore

P (X) is irreducible over Q(
√
d).

Corollary 5 : Let p be a prime number, d a discriminant of a polynomial P (X) =

Xp − aX + b in Z[X] where pb and (p − 1)a are relatively prime, and h(Q(
√
d)) = p,

then P (X) is irreducible over Q or P (X) splits completely in Q(
√
d).

Corollary 6: Let d be a discriminant of a polynomial P (X) = Xn − aX + b in Z[X]

where nb and (n− 1)a are relatively prime, we then get :

If n ≥ 4 then h(Q(
√
d)) ≥ 2.

The proof of this corollary relies on Proposition 2.4 and Corollary 4.

Proposition 2.7 : Let P (X) = X3− aX + b be a polynomial in Z[X] where 3b and 2a

are relatively prime, and d be its discriminant, we then get :

If P (X) has a root t in Z, then


9t2 − d = ±4
t(a− t2) = b
−3t2 + 4a = d

Proof : If P (X) has a root t in Z, we then deduce from proposition 2.4 and 2.5 that
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P (X) has two roots α1 and α2 in Q(
√
d)−Q such that

α1 − α2 = ±
√
d

(t− α1)(t− α2) = ±1
P (X) = (X − t)(X2 + tX + t2 − a)
−3t3 + 4a = d
t(a− t2) = b

Therefore α1 and α2 are roots of the equation X2 + tX+ t2−a = 0, so α1 = −t+
√

d
2 and

α2 = −t−
√

d
2 , hence

(t− α1)(t− α2) = ±1 ⇐⇒ 3t−
√

d
2

3t+
√

d
2 = ±1

⇐⇒ 9t2 − d = ±4

We then deduce that 
9t2 − d = ±4
t(a− t2) = b
−3t2 + 4a = d

Corollary 7 : Let P (X) = X3 − aX + b be a polynomial in Z[X] where 3b and 2a are

relatively prime, and d be its discriminant, we then get :

If h(Q(
√
d)) = 1, then d ≡ 5 mod 8 and is a prime number.

Proof : Assume that h(Q(
√
d)) = 1. Since d is the discriminant of the polynomial

P (X) = X3 − aX + b ∈ Z[X] where 3b and 2a are relatively prime, then P (X) splits

completely in Q(
√
d). From Proposition 2.4 and 2.6, there exists an odd number t

such that 9t2 − d = ±4. As t is an odd number, then t2 ≡ 1 mod 8. By the formula

9t2 − d = ±4 we deduce d ≡ 1− (±4) ≡ 5 mod 8.

If d is not a prime number, then by [3], we get h(Q(
√
d)) > 1.

Corollary 8 : Let d ≡ 1 mod 4 be a square free integer for which there exist a and b

in Z such that d = 4a3 − 27b2 where 3b and 2a are relatively prime.

If h(Q(
√
d)) = 1 then d = 5 or there exists an odd number t such that

9t2 + 4 = d
t(a− t2) = b
−3t2 + 4a = d

Proof : Let d ≡ 1 mod 4 be a square free integer such that h(Q(
√
d)) = 1. We assume

that there exist a and b in Z such that d = 4a3 − 27b2 where 3b and 2a are relatively

prime. We refer to Proposition 2.6 and Corollary 7, we then get :
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d is a prime number and there exists an odd number t such that
9t2 + (±4) = ±d
t(a− t2) = b
−3t2 + 4a = d

But we have :
9t2 − 4 = d ⇐⇒ (3t− 2)(3t+ 2) = d

⇐⇒ (3t− 2 = 1 and 3t+ 2 = d) or (3t− 2 = −d and 3t+ 2 = −1)
⇐⇒ d = 5

Remark 2 : The converse of Corollary 8 is not in general true : There exist a square

free integer d, a and b in Z such that d = 4a3 − 27b2 where 3b and 2a are relatively

prime, and an odd number t such that
9t2 + 4 = d
t(a− t2) = b
−3t2 + 4a = d

But h(Q(
√
d)) > 1.

Example 1 : We refer to [4] and we use the Maple’s software, to deduce the following

examples :

a = 76, b = 255, t = 5, d = 229, P (X) = (X − 5)(X2 + 5X − 51), h(Q(
√

229)) = 3

a = 244, b = 1467, t = 9, d = 733, P (X) = (X − 9)(X2 + 9X − 163), h(Q(
√

229)) = 3

a = 364, b = 2673, t = 11, d = 1093, P (X) = (X − 11)(X2 + 11X − 243),

h(Q(
√

229)) = 5

Corollary 9 : For all non prime square free integers d ≡ 1 mod 8 or d ≡ 5 mod 8 such

that h(Q(
√
d)) = 1, the equality d = (−1)

n(n−1)
n (nnbn−1 − (n− 1)n−1an) does not hold

for n ≥ 3, a and b in Z where nb and (n− 1)a are relatively prime.

The proof of this corollary relies on Corollary 7.

Theorem 2.1 : Let p be a prime number, then there exist infinitely many quadratic

fields Q(
√
d) with class number divisible by p, where d = (−1)

p(p−1)
2 (pp− (p−1)(p−1)ap)

and p is relatively prime with a if p 6= 2.

Proof : If p = 2, we consider the quadratic field Q(
√
qq′) where q and q′ are two

distinct prime numbers such that q ≡ q′ ≡ 1 mod 4. It is easy to see that Q(
√
q,
√
q′) is

an unramified extension over Q(
√
qq′), therefore there exist infinitely many quadratic

fields with class number divisible by 2.
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If p > 2, we consider P (X) = Xp−aX+1 ∈ Z[X] with a ≡ 1 mod p, then (p−1)a and p

are relatively prime, and P (X) = Xp−X+1 in Z/pZ[X]. By Artin Schreier’s theorem,

we deduce that P (X) is irreducible over Z/pZ if and only if P (X) does not have roots

in Z/pZ. In our case, it is easy to see that P (X) does not have roots in Z/pZ, therefor

p is unramified in the splitting field denoted K of a polynomial P (X) and divides the

residue class degree of p in K/Q. Since p is an odd number, Q(
√
d) ⊂ K where d is

the discriminant of P (X) and K is an unramified extension over Q(
√
d) [8], therefore p

divides the class number of Q(
√
d).

It seems that there exist infinitely many numbers a ≡ 1 mod p such that p divides the

class number of Q(
√
d) with d is a discriminant of P (X) = Xp−aX+1. Let a0 be one of

such numbers, and d0 be a discriminant of P (X) = Xp− a0X + 1. We claim that there

are only finite numbers of a’s with Q(
√
d) = Q(

√
d0). Indeed, since Q(

√
d) = Q(

√
d0),

then there exist an integer m such that d = m2d0, hence m2(pp − (p − 1)p−1ap
0) =

pp − (p − 1)p−1ap, therefore the pair (m, a) is an integral solution of the Diophantine

equation

(pp − (p− 1)p−1ap
0)Y 2 = −(p− 1)p−1Xp + pp. (1)

Since there exist only a finite number of integral solutions of (1) by Siegel’s theorem,

therefore there exist infinitely many quadratic fields with class number divisible by p.

In the two cases we have shown that for every prime number p there exist infinitely

many quadratic fields with class number divisible by p.

Remark 3 : Theorem 2.1 is considered as a sort of generalization of Honda [2], where

the case p = 3 is treated.

Theorem 2.2 : Let n be a given a number greater than 2, then there exist infinitely

many quadratic fields with class number divisible by n.

Proof : If n = 2, Theorem 2.1.

If n > 2, we refer to Dirichlet’s theorem [9], we deduce that there exists a prime number

p such that p ≡ 1 mod 2n. We consider P (X) = Xp − aX + b ∈ Z[X] with p divides

b, (p − 1)a and pb are relatively prime, d its discriminant and the order of a is equal

to p − 1. From Proposition 2.5 we get P (X) = X(Xp−1 − a) in Z/pZ[X], Xp−1 − a
is irreducible over Z/pZ, therefore p is unramified in the splitting field denoted K of

a polynomial P (X) and p − 1 divides the residue class degree of p in K/Q. Since 2n

divides p − 1, hence 2n divides the residue class degree of p in K/Q. But we have
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Q(
√
d) ⊂ K where d is the discriminant of P (X), K is an unramified extension over

Q(
√
d) [8] and [Q(

√
d) : Q] = 2, then n divides the class number of Q(

√
d).

The proof of the infiniteness of the number of quadratic number fields for every natural

number n is similar Theorem 2.1.

3. Construction of Hilbert’s Fields of Quadratic Fields

Let P (X) = Xn−aX+b be a polynomial over Z such that nb and (n−1)a are relatively

prime, d be its discriminant, h(Q(
√
d)) = h be the class number of Q(

√
d) and H be

the Hilbert’s field of a quadratic field k = Q(
√
d).

We refer to [4] and we use the Maple’s software, to get the following examples for n = 3

and for small integers a and b :

a = 1, b = 1, d = −23, h = 3, P (X) = X3 −X + 1, H = k
(

3
√

108 + 12
√

69)
)

a = 4, b = 1, d = 229, h = 3, P (X) = X3 − 4X + 1, H = k
(

3
√
−108 + 12

√
−687

)
a = 5, b = 1, d = 473, h = 3, P (X) = X3 − 5X + 1, H = k

(
3
√
−108 + 12

√
−1419

)
a = 2, b = 3, d = −211, h = 3, P (X) = X3 − 2X + 3, H = k

(
3
√

324 + 12
√

633
)

a = 5, b = 3, d = 257, h = 3, P (X) = X3 − 8X + 9, H = k
(

3
√

324 + 12
√

417
)

a = 8, b = 9, d = −139, h = 3, P (X) = X3 − 7X + 3, H = k
(

3
√

972 + 12
√

417
)

.
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