International J. of Pure & Engg. Mathematics (IJPEM) ISSN 2348-3881, Vol. 4 No. II (August, 2016), pp. 135-144

SOME NEW TYPES OF FILTERS IN BCK-ALGEBRA

HABEEB KAREEM ABDULLAH¹ AND KARAR TAHER RADHY²

^{1,2} University of Kufa Faculty of Education for Girls, Department of mathematics, Iraq

Abstract

In this paper, we study a new types of filters its called complete BCK-filter denoted by (c-BCK-filter), complete crazy filter denoted by (c-crazy filter) and closed with respect to c-BCK filter. Also we stated and prove some theorems which determine the relationship between these notions.

1. Introduction

In 1966, Y. Imai and K. Iseki introduced the a new notation called a BCK-algebra [7], thereafter in 1980, E. Y. Deeba [1] introduced the notation of filters and in the setting of bounded implicative BCK-algebra constructed quotient algebra via a filter. In 1996 J. Meng [2] introduced the notion of BCK-filter in BCK-algeba. Then, after in 2007 Wieslaw Dudek and young Bae Jun gave the definition of the poor and crazy filters see [6]. The paper is organized as follows, in section 1 we introduced some definitions and results on BCK-algebra which we use in this paper. In section 2 we introduced definitions of completely BCK filter, completely crazy filter, closed with respect to c-BCK filter and relationship between them.

© http://www.ascent-journals.com

2. Preliminaries

In this section, we give some basic concepts about BCK-algebra, BCK-filter, crazy filter and basic concepts that we need in our work.

Definition 2.1 [7] : A BCK-algebra is a set X with a binary operation "*" and constant "0" which satisfies the following axioms :

(1) ((x * y) * (x * z)) * (z * y) = 0,

(2)
$$(x * (x * y)) * y = 0$$
,

- (3) x * x = 0,
- (4) 0 * x = 0,
- (5) x * y = 0 and y * x = 0 imply x = y.

Remark 2.2 [7] : A BCK-algebra can be (partially) ordered by $x \le y$ if and only if x * y = 0.

Theorem 2.3 [7] : In any BCK-algebra, the following hold :

(1)
$$x * 0 = x$$
,

- (2) $x * y \leq x$,
- (3) (x * y) * z = (x * z) * y,
- (4) $(x * z) * (y * z) \le x * y$,
- (5) $x \leq y$ implies $x * z \leq y * z$ and $z * y \leq z * x$,

for all $x, y, z \in X$.

Definition 2.4 [4]: If there is a special element e of a BCK-algebra X satisfying $x \le e$ for all $x \in X$ then e is called a unit of X. A BCK-algebra with unit is called bounded BCK-algebra. In a bounded BCK-algebra X, we denoted by for every e * x by x^* for every $x \in X$.

Definition 2.5 [2]: A BCK-algebra X is said to be **commutative** if satisfies x*(x*y) = y*(y*x) and for all $x, y \in X, y*(y*x) = x \land y$ and $(x^* \land y^*)^* = x \lor y$.

Definition 2.6 [4]: For a bounded BCK-algebra, if an element x satisfies $(x^*)^* = x$, then x is called an involution. If every element of X is an involution, we call X is an involutory BCK-algebra.

Proposition 2.7 [3]: A bounded commutative BCK-algebra is involutory.Proposition 2.8 [3]: In a bounded BCK-algebra, we have

- (1) $e^* = 0$ and $0^* = e$,
- (2) $y \le x$ implies $x^* \le y^*$,
- (3) $x^* * y^* \le y * x$,
- (4) $x^* * y^* = y * x$, when X is involtant (commutative),

Definition 2.9 [3]: A nonempty subset F of a bounded BCK-algebra X is called BCK-filter if

- (1) $e \in F$
- (2) $(x^* * y^*)^* \in F, y \in F$ implies $x \in F$.

Definition 2.10 [5] : A nonempty subset F of bounded BCK-algebra X is called a crazy filter if it satisfied

- (1) $e \in F$,
- (2) $(y * x)^* \in F, y \in F$ implies $x \in F$.

Definition 2.11 [4] : Let f be a mapping from a BCK-algebra X into a BCK-algebra Y. Then f is called

(1) Homomorphism if f(x * y) = f(x) * f(y) for all $x, y \in Y$.

(2) Epimorphism if f is homomorphism and onto.

- (3) Monomorphism if f is homomorphism and one to one.
- (4) Isomorphism if f is epimorphism and monomorphism.

Lemma 2.12 [4]: If f is a homomorphism from BCK-algebra X into BCK-algebra Y, then f is isotone i.e, $x \leq y \Rightarrow f(x) \leq f(y)$, for all $x, y \in X$.

Lemma 2.13 [5] : Suppose f is an epimorphism from BCK-algebra X into BCK-algebra Y, then $f(e_x) = e_y$ where e_x, e_y are the units of X and Y respectively.

Lemma 2.14 : let f be an isomorphism from BCK-algebra X into BCK-algebra Y, then

(1) $f(x^*) = (f(x))^*$, for all $x \in X$.

(2)
$$f^{-1}(y^*) = (f^{-1}(y))^*$$
, for all $y \in Y$.

Proof :

- (1) $f(x^*) = f(e_x * x) = f(e_x) * f(x) = e_y * f(x) = (f(x))^*$ by Lemma 2.13.
- (2) $f^{-1}(y^*) = f^{-1}(e_y * y) = f^{-1}(e_y) * f^{-1}(y) = e_x * f^{-1}(y) = (f^{-1}(y))^*$ by lemma 2.13.

Theorem 2.15 : If f is an isomorphism from BCK-algebra X into BCK-algebra Y, then the image of a crazy filter is a crazy filter.

Proof: Let f be an isomorphism from BCK-algebra X into BCK-algebra Y and let A be a crazy filter in X, then $e_x \in A$ so $f(e_x) = e_y \in f(A)$, (by Lemma 2.13).

Now let $(y * x)^* \in f(A), y \in f(A)$, then $f^{-1}((y * x)^*) \in A, f^{-1}(y) \in A$ (since f is onto). But $f^{-1}((y * x)^*) = (f^{-1}(y * x))^* = (f^{-1}(y) * f^{-1}(x))^*$ by (Lemma 2.14(2)). Therefore, $(f^{-1}(y) * f^{-1}(x))^* \in A, f^{-1}(y) \in A$.

Since A is a crazy filter in X, then $f^{-1}(x) \in A$, thus $x \in f(A)$, that means f(A) is a crazy filter in Y.

Theorem 2.16 : If f is an epimorphism from BCK-algebra X into BCK-algebra Y, then the inverse image of a crazy filter is a crazy filter.

Proof: Let f be an epimorphism from BCK-algebra X into BCK-algebra Y and let B be a crazy filter in Y. Then $e_y \in B$ since $f(e_x) = e_y \in B$, (by Lemma 2.13), thus $e_x \in f^{-1}(B)$.

Now let $(y * x)^* \in f^{-1}(B), y \in f^{-1}(B)$, so $f((y * x)^*) \in B, f(y) \in B$. But $f((y * x)^*) = (f(y * x))^* = (f(y) * f(x))^*$ (by Lemma 2.14 (1)).

138

Therefore $(f(y) * f(x))^* \in B$, $f(y) \in B$, then $f(x) \in B$, since B is a crazy filter, thus $x \in f^{-1}(B)$, that means $f^{-1}(B)$ is a crazy filter in X.

3. The Main Results

In this section, we provide a definitions of complete BCK-filter and complete crazy filter. And, we study its relationship with BCK-filter in BCK-algebra.

Definition 3.1 : A subset F of a bounded BCK-algebra X is said to be complete BCK-filter (c-BCK-filter), if,

- (1) $e \in F$
- (2) $(x^* * y^*)^* \in F, \forall y \in F \text{ implies } x \in F.$

Example 3.2: Let $X = \{0, 1, 2, 3\}$ and a binary operation * is defined by

*	0	1	2	3
0	0	0	0	0
1	1	0	0	0
2	2	1	0	0
3	3	2	1	0

It is clear that (X, *, 0) is a bounded BCK-algebra (see [3]) and $F = \{1, 3\}$ is c-BCK-filter.

Example 3.3: Let $X = \{0, 1, 2\}$ and a binary operation * is defined by

*	0	1	2
0	0	0	0
1	1	0	0
2	2	2	0

It is clear that (X, *, 0) is a bounded BCK-algebra and $F = \{0, 2\}$ is not c-BCK-filter since $(1^* * 0^*)^* = 2 \in F$ and $(1^* * 2^*)^* = 0 \in F$ but $1 \notin F$.

Proposition 3.4 : Every BCK-filter in bounded BCK-algebra X is a c-BCK-filter.

Proof : Let F be a BCK-filter and let $(x^* * y^*)^* \in F$, $\forall y \in F$.

Since F is BCK-filter, then $x \in F$. Thus F is c-BCK-filter.

Remark 3.5 : The converse of Proposition 3.4 needs not be true in general as in the Example 3.2 $F = \{1, 3\}$ is c-BCK-filter but it's not BCK-filter, since $(2^* * 1^*)^* = 3 \in F$ but $2 \notin F$.

Corollary 3.6 : In general $\{e\}$, X are trivial c-BCK-filter.

Proposition 3.7: If X is involutory BCK-algebra then every subset of X contained e is c-BCK-filter.

Proof: Clear by $(x^* * e^*)^* = x$ for all $x \in X$.

Example 3.8: Let $X = \{0, 1, 2, 3, 4\}$ and a binary operation * is defined by

				3	
0	0	0	0	0	0
1	1	0	0	0	0
2	2	1	0	0	0
3	3	1	1	0	0
4	4	3	2	0 0 0 1	0

It is clear that (X, *0) is an involutory bounded BCK-algebra with unit 4 (see [4]) and $\{4\}, \{0, 4\}, \{1, 4\}, \{2, 4\}, \{3, 4\}, \cdots$ etc are c-BCK-filter.

Corollary 3.9 : If X is bounded commutative BCK-algebra then every subset of X contained e is c-BCK-filter.

Proposition 3.10 : If X is bounded BCK-algebra, |x| > 2 and $x^* = e$ for all $x \in X$ such that $x \neq e$ then

- (1) Every a proper subset F of X contain 0 is not c-BCK-filter
- (2) Every a proper subset F of X not contain 0 and contain e is c-BCK-filter.

Proof :

- (1) Since $\exists x \in X$ such that $(x^* * y^*)^* \in F$, $\forall y \in F$ but $x \notin F$.
- (2) Since $\forall x \in X$ such that $(x^* * e^*)^* = 0 \notin F$.

Remark 3.11 : Note that the intersection and union of two c-BCK-filter are not necessary to be c-BCK-filter as shown in the following example.

Example 3.12: Let $X = \{0, 1, 2, 3, 4\}$ and a binary operation * is defined

*	0	1	2	3	4
0	0	0	0	0	0
1	1	0	1	0	0
2	2	2	0	0	0
3	3	3	3	0	0
4	4	3	4	1	0

Then (X, *, 0) is bounded BCK-algebra with unit 4 (see [4]). Now let $F_1 = \{0, 1, 4\}$ and $F_2 = \{0, 3, 4\}$, we can show easily that F_1 and F_2 are c-BCK-filter in X. But $F_1 \cap F_2 = \{0, 4\}$ cannot be c-BCK-filter, since $(2^* * 4^*) = 0 \in F_1 \cap F_2$ and $(2^* * 0^*)^* = 4 \in F_1 \cap F_2$, but $2 \notin F_1 \cap F_2$.

So $F_1 \cup F_2 = \{0, 1, 3, 4\}$ cannot be c-BCK-filter, since $(2^* * 4^*)^* = 0 \in F_1 \cup F_2$, $(2^* * 1)^* = 3 \in F_1 \cup F_2$, $((2^* * 3^*)^* = 1 \in F_1 \cup F_2$ and $(2^* * 0)^* = 4 \in F_1 \cup F_2$, but $2 \notin F_1 \cup F_2$.

Proposition 3.13: Let f be isomorphism from a bounded BCK-algebra X into a bounded BCK-algebra Y, the image of c-BCK-filter is c-BCK-filter.

Proof: Let f be an isomorphism function from bounded BCK-algebra X into bounded BCK-algebra Y and let F be a c-BCK-filter in X.

Then $e_x \in F$ so $(e_x) = e_y \in f(F)$, (by Lemma 2.13).

Now let $(x^* * y^*)^* \in F$, $\forall y \in f(F)$, then $f^{-1}((x^* * y^*)^*) \in F$, $\forall f^{-1}(y) \in F$, (since f is onto).

But $f^{-1}((x^* * y^*)^*) = ((f^{-1}(x))^* * (f^{-1}(y))^*)^*$, by (Lemma 2.14(2)). Therefore $((f^{-1}(x))^* * (f^{-1}(y))^*)^* \in F, \forall f^{-1}(y) \in F$.

Since F is c-BCK-filter in X, then $f^{-1}(x) \in F$. Thus $x \in f(F)$. That means f(F) is c-BCK-filter in Y.

Proposition 3.14 : Let f be epimorphism from a bounded BCK-algebra X into a bounded BCK-algebra Y, the inverse image of c-BCK-filter is c-BCK-filter.

Proof: Let f be epimorphism from a bounded BCK-algebra X into a bounded BCK-algebra Y and let D be a c-BCK-filter in Y, so $e_y \in D$.

Then $f(e_x) = e_y \in D$ so $e_x \in f^{-1}(D)$, (by Lemma 2.13).

Now let $(x^* * y^*)^* \in f^{-1}(D), \forall y \in f^{-1}(D)$, so $f((x^* * y^*)^*) \in D, \forall f(y) \in D$, since f is onto). But $f((x^* * y^*)^*) = ((f(x))^* * (f(y))^*)^* \in D, \forall f(y) \in D$. Then $f(x) \in D$ since D is a c-BCK-filter, therefore $x \in f^{-1}(D)$. Then $f^{-1}(D)$ is c-BCK-filter.

Proposition 3.15 : Assume that X is involutory. Then a nonempty subset F of X is a c-BCK-filter of X if and only if satisfies

(1) $e \in F$

(2) $(y * x)^* \in F, \forall y \in F$ implies $x \in F$.

Proof: Let F is c-BCK-filter, then $e \in F$ and let $(y * x)^* \in F, \forall y \in F$. Then $(x^* * y^*)^* \in F, \forall y \in F$ (since X is involutory). Thus $x \in F$ (since F is c-BCK-filter).

Conversely, let $(x^* * y^*)^* \in F, \forall y \in F$ since X is involutory. Then $(y * x)^* \in F, \forall y \in F$ (since X is involutory). Thus $y \in F$, then F is c-BCK-filter.

Corollary 3.16 : Assume that X is commutative. Then a nonempty subset F of X is a c-BCK-filter of X if and only if satisfies

(1) $e \in F$

(2) $(y * x)^* \in F, \forall y \in F$ implies $x \in F$.

Proposition 3.17: Let X be a bounded BCK-algebra and F be c-BCK-filter of X. If $x \leq y \ \forall x \in F$ then $y \in F$.

Proof: Let $x \leq y, \forall x \in F$ then $y^* \leq x^*$, since $(y^* * x^*)^* = (0)^* = e \in F$ and F is c-BCK-filter then $y \in F$.

Definition 3.18 : A subset F of a BCK-algebra X is said to be complete crazy-filter (c-Crazy-filter), if,

(1) $e \in F$

(2) $(y * x)^* \in F, \forall y \in F$ implies $x \in F$.

Example 3.19: Let $X = \{0, 1, 2, 3, 4\}$ and a binary operation * is defined by

*	0	1	2	3	4
0	0	0	0	0	0
1	1	$ \begin{array}{c} 0 \\ 2 \\ 3 \end{array} $	1	0	0
2	2	2	0	0	0
3	3	3	3	0	0
4	4	3	4	1	0

It is clear that (X, *, 0) is a bounded BCK-algebra with unit 4 and $F = \{1, 4\}$ is ccrazy-filter.

Proposition 3.20: Every crazy filter in bounded BCK-algebra X is c-crazy-filter.

Proof: Let F be a crazy filter and let $(y * x)^* \in F, \forall y \in F$, since F is crazy filter, then $x \in F$, thus F is c-crazy-filter.

Remark 3.21 : The converse of Proposition 3.20 needs not be true in general as in the example (3.19) $F = \{1, 4\}$ is c-crazy-filter but it's not crazy-filter, since $(1*3)^* = 4 \in F$ but $3 \notin F$.

Definition 3.22: Let F and D be two subset of bounded BCK-algebra X such that $F \subseteq D$, then F is said to be closed with respect to D, if $(x^* * y^*)^* \in D, \forall y \in F$, then $(x^* * y^*)^* \in F, x \in X$.

Example 3.23: Let $X = \{0, 1, 2, 3\}$ and a binary operation * is defined by

*	0	1	2	3
0	0	0	0	0
1	1	0	0	0
2	2	2	0	0
3	3	2	1	0

It is clear that (X, *, 0) is a bounded BCK-algebra with unit 3

- (1) Let $F = \{1, 3\}$ and $D = \{0, 1, 3\}$, then F is closed with respect to D.
- (2) Let $F = \{0,3\}$ and $D = \{0,1,3\}$, then F is not closed with respect to D, since $(1^* * 3^*)^* = 1 \in D$ and $(1^* * 0^*)^* = 3 \in D$, but $(1^* * 3^*) = 1 \notin F$.

Proposition 3.24: Let F and D be two subset of involutory bounded BCK-algebra X such that $F \subseteq D$, then F is said to be closed with respect to D, if and only if $(y * x)^* \in D, \forall y \in F$, then $(y * x)^* \in F, x \in X$.

 $\mathbf{Proof}:\ \mathbf{Clear}.$

Proposition 3.25 : The union of family of closed with respect to D is closed with respect to D.

Proof: Let $\{F_i : i \in \Delta\}$ be a family of closed with respect to D and let $(x^* * y^*)^* \in D, \forall y \in \bigcup_{i \in \Delta} F_i$, since $\forall i \in \Delta, F_i$ is closed with respect to D then $\exists j \in \Delta$ such that $(x^* * y^*)^* \in D, \forall y \in F_j$, then $(x^* * y^*)^* \in F_j$. Thus $(x^* * y^*)^* \in \bigcup_{i \in \Delta} F_i$, then $\bigcup_{i \in \Delta} F_i$ is closed with respect to D.

Remark 3.26: Note that the intersection of two closed with respect to D is not closed with respect to D. As it is shown in the following example.

Example 3.27: Let $X = \{0, 1, 2, 3, 4\}$ and a binary operation * is defined

*	0	1	2	3	4	5
0	0	0	0	0	0	0
1	1	0	1	1	0	0
2	2	2	0	0	0	0
3	3	3	2	0	2	0
4	4	2	1	1	0	0
5	0 1 2 3 4 5	3	4	1	2	0

It is clear that (X, *, 0) is a bounded BCK-algebra with unit 5 (see[4]).

Let $D = \{0, 1, 2, 3, 5\}$ and $F_1 = \{0, 1, 3, 5\}, F_2 = \{0, 2, 3, 5\}$ are closed with respect to D, but $F_1 \cap F_2 = \{0, 3, 5\}$ is not closed with respect to D, since $(0 * 0)^* = 5 \in D, (3 * 0)^* = 1 \in D$ and $(5 * 0)^* = 0 \in D$, but $(3 * 0)^* = 1 \notin F_1 \cap F_2$.

Remark 3.28 : If $F \subseteq D$ and F is c-BCK-filter, then D is not in general c-BCK-filter, as in the following example.

Example 3.29 : Let $X = \{0, 1, 2\}$ and a binary operation * is defined by

*	0	1	2
0	0	0	0
1	1	0	0
2	2	2	0

It is clear that (X, *, 0) is a bounded BCK-algebra with unit $2F = \{2\}$ and $D = \{0, 2\}$ *F* is c-BCK-filter, but *D* is not c-BCK-filter.

Proposition 3.30: Let F be c-BCK-filter of bounded BCK-algebra X and $\phi \neq F \subseteq D$. If F is closed with respect to D, then D is c-BCK-filter.

Proof: Let $(x^* * y^*)^* \in D, \forall y \in D$. Since $F \subseteq D$, then $(x^* * y^*)^* \in D, \forall y \in F$. Since F is closed with respect to D, then $(x^* * y^*)^* \in F, \forall y \in F$, since F is c-BCK-filter, thus $x \in F$, consequently $x \in D$, then D is c-BCK-filter.

References

- [1] Deeba E. Y., Filter theory of BCK-algebra, Math. Japon, 25 (1980), 631-639.
- [2] Iseki K. and Tanaka S., An introduction to ideal theory of BCK-algebra, Math. Japanica, 23 (1978), 1-26.
- [3] Meng Jie., BCK-filters, Math. Japan., 44 (1996), 119-129.
- [4] Meng Jie. and Jun Y. B., BCK-algebras, Kyung Moon Sa Co., Seoul, Korean, (1994).
- [5] Pelyan sun, Homomorphism theorems on dual ideals in BCK-algebras, Soochow Journal of Mathematics, 26(3) (July 2000), 309-316.
- [6] Wiselaw A. Dudek and Young Bae Jun, Poor and Crazy Filter of BCK-algebra, (2007).
- [7] Lmai Y. and Iseki K., On axiom system of propositional calculi XIV, Proc. Japan Academy, 42 (1966), 19-22.