International J. of Pure \& Engg. Mathematics (IJPEM)

# SOME NEW TYPES OF FILTERS IN BCK-ALGEBRA 

HABEEB KAREEM ABDULLAH ${ }^{1}$ AND KARAR TAHER RADHY ${ }^{2}$<br>${ }^{1,2}$ University of Kufa Faculty of Education for Girls, Department of mathematics, Iraq


#### Abstract

In this paper, we study a new types of filters its called complete BCK-filter denoted by (c-BCK-filter), complete crazy filter denoted by (c-crazy filter) and closed with respect to c-BCK filter. Also we stated and prove some theorems which determine the relationship between these notions.


## 1. Introduction

In 1966, Y. Imai and K. Iseki introduced the a new notation called a BCK-algebra [7], thereafter in 1980, E. Y. Deeba [1] introduced the notation of filters and in the setting of bounded implicative BCK-algebra constructed quotient algebra via a filter. In 1996 J. Meng [2] introduced the notion of BCK-filter in BCK-algeba. Then, after in 2007 Wieslaw Dudek and young Bae Jun gave the definition of the poor and crazy filters see [6]. The paper is organized as follows, in section 1 we introduced some definitions and results on BCK-algebra which we use in this paper. In section 2 we introduced definitions of completely BCK filter, completely crazy filter, closed with respect to cBCK filter and relationship between them.

## 2. Preliminaries

In this section, we give some basic concepts about BCK-algebra, BCK-filter, crazy filter and basic concepts that we need in our work.
Definition 2.1 [7] : A BCK-algebra is a set $X$ with a binary operation "*" and constant " 0 " which satisfies the following axioms :
(1) $((x * y) *(x * z)) *(z * y)=0$,
(2) $(x *(x * y)) * y=0$,
(3) $x * x=0$,
(4) $0 * x=0$,
(5) $x * y=0$ and $y * x=0$ imply $x=y$.

Remark 2.2 [7] : A BCK-algebra can be (partially) ordered by $x \leq y$ if and only if $x * y=0$.
Theorem 2.3 [7]: In any BCK-algebra, the following hold :
(1) $x * 0=x$,
(2) $x * y \leq x$,
(3) $(x * y) * z=(x * z) * y$,
(4) $(x * z) *(y * z) \leq x * y$,
(5) $x \leq y$ implies $x * z \leq y * z$ and $z * y \leq z * x$,
for all $x, y, z \in X$.
Definition 2.4 [4]: If there is a special element $e$ of a BCK-algebra $X$ satisfying $x \leq e$ for all $x \in X$ then $e$ is called a unit of $X$. A BCK-algebra with unit is called bounded BCK-algebra. In a bounded BCK-algebra $X$, we denoted by for every $e * x$ by $x^{*}$ for every $x \in X$.
Definition 2.5 [2] : A BCK-algebra $X$ is said to be commutative if satisfies $x *(x * y)=$ $y *(y * x)$ and for all $x, y \in X, y *(y * x)=x \wedge y$ and $\left(x^{*} \wedge y^{*}\right)^{*}=x \vee y$.

Definition 2.6 [4] : For a bounded BCK-algebra, if an element $x$ satisfies $\left(x^{*}\right)^{*}=x$, then $x$ is called an involution. If every element of $X$ is an involution, we call $X$ is an involutory BCK-algebra.

Proposition 2.7 [3] : A bounded commutative BCK-algebra is involutory.
Proposition 2.8 [3] : In a bounded BCK-algebra, we have
(1) $e^{*}=0$ and $0^{*}=e$,
(2) $y \leq x$ implies $x^{*} \leq y^{*}$,
(3) $x^{*} * y^{*} \leq y * x$,
(4) $x^{*} * y^{*}=y * x$, when $X$ is invoultary (commutative),

Definition 2.9 [3] : A nonempty subset $F$ of a bounded BCK-algebra $X$ is called BCK-filter if
(1) $e \in F$
(2) $\left(x^{*} * y^{*}\right)^{*} \in F, y \in F$ implies $x \in F$.

Definition 2.10 [5] : A nonempty subset $F$ of bounded BCK-algebra $X$ is called a crazy filter if it satisfied
(1) $e \in F$,
(2) $(y * x)^{*} \in F, y \in F$ implies $x \in F$.

Definition 2.11 [4] : Let $f$ be a mapping from a BCK-algebra $X$ into a BCK-algebra $Y$. Then $f$ is called
(1) Homomorphism if $f(x * y)=f(x) * f(y)$ for all $x, y \in Y$.
(2) Epimorphism if $f$ is homomorphism and onto.
(3) Monomorphism if $f$ is homomorphism and one to one.
(4) Isomorphism if $f$ is epimorphism and monomorphism.

Lemma 2.12 [4]: If $f$ is a homomorphism from BCK-algebra $X$ into BCK-algebra $Y$, then $f$ is isotone i.e, $x \leq y \Rightarrow f(x) \leq f(y)$, for all $x, y \in X$.
Lemma 2.13 [5]: Suppose $f$ is an epimorphism from BCK-algebra $X$ into BCKalgebra $Y$, then $f\left(e_{x}\right)=e_{y}$ where $e_{x}, e_{y}$ are the units of $X$ and $Y$ respectively.
Lemma 2.14: let $f$ be an isomorphism from BCK-algebra $X$ into BCK-algebra $Y$, then
(1) $f\left(x^{*}\right)=(f(x))^{*}$, for all $x \in X$.
(2) $f^{-1}\left(y^{*}\right)=\left(f^{-1}(y)\right)^{*}$, for all $y \in Y$.

Proof :
(1) $f\left(x^{*}\right)=f\left(e_{x} * x\right)=f\left(e_{x}\right) * f(x)=e_{y} * f(x)=(f(x))^{*}$ by Lemma 2.13.
(2) $f^{-1}\left(y^{*}\right)=f^{-1}\left(e_{y} * y\right)=f^{-1}\left(e_{y}\right) * f^{-1}(y)=e_{x} * f^{-1}(y)=\left(f^{-1}(y)\right)^{*}$ by lemma 2.13.

Theorem 2.15: If $f$ is an isomorphism from BCK-algebra $X$ into BCK-algebra $Y$, then the image of a crazy filter is a crazy filter.
Proof : Let $f$ be an isomorphism from BCK-algebra $X$ into BCK-algebra $Y$ and let $A$ be a crazy filter in $X$, then $e_{x} \in A$ so $f\left(e_{x}\right)=e_{y} \in f(A)$, (by Lemma 2.13).
Now let $(y * x)^{*} \in f(A), y \in f(A)$, then $f^{-1}\left((y * x)^{*}\right) \in A, f^{-1}(y) \in A$ (since $f$ is onto). But $f^{-1}\left((y * x)^{*}\right)=\left(f^{-1}(y * x)\right)^{*}=\left(f^{-1}(y) * f^{-1}(x)\right)^{*}$ by (Lemma 2.14(2)).
Therefore, $\left(f^{-1}(y) * f^{-1}(x)\right)^{*} \in A, f^{-1}(y) \in A$.
Since $A$ is a crazy filter in $X$, then $f^{-1}(x) \in A$, thus $x \in f(A)$, that means $f(A)$ is a crazy filter in $Y$.
Theorem 2.16: If $f$ is an epimorphism from BCK-algebra $X$ into BCK-algebra $Y$, then the inverse image of a crazy filter is a crazy filter.
Proof: Let $f$ be an epimorphism from BCK-algebra $X$ into BCK-algebra $Y$ and let $B$ be a crazy filter in $Y$. Then $e_{y} \in B$ since $f\left(e_{x}\right)=e_{y} \in B$, (by Lemma 2.13), thus $e_{x} \in f^{-1}(B)$.
Now let $(y * x)^{*} \in f^{-1}(B), y \in f^{-1}(B)$, so $f\left((y * x)^{*}\right) \in B, f(y) \in B$.
But $f\left((y * x)^{*}\right)=(f(y * x))^{*}=(f(y) * f(x))^{*}($ by Lemma $2.14(1))$.

Therefore $(f(y) * f(x))^{*} \in B, f(y) \in B$, then $f(x) \in B$, since $B$ is a crazy filter, thus $x \in f^{-1}(B)$, that means $f^{-1}(B)$ is a crazy filter in $X$.

## 3. The Main Results

In this section, we provide a definitions of complete BCK-filter and complete crazy filter. And, we study its relationship with BCK-filter in BCK-algebra.
Definition 3.1 : A subset $F$ of a bounded BCK-algebra $X$ is said to be complete BCK-filter (c-BCK-filter), if,
(1) $e \in F$
(2) $\left(x^{*} * y^{*}\right)^{*} \in F, \forall y \in F$ implies $x \in F$.

Example 3.2 : Let $X=\{0,1,2,3\}$ and a binary operation $*$ is defined by

| $*$ | 0 | 1 | 2 | 3 |
| :--- | :--- | :--- | :--- | :--- |
| 0 | 0 | 0 | 0 | 0 |
| 1 | 1 | 0 | 0 | 0 |
| 2 | 2 | 1 | 0 | 0 |
| 3 | 3 | 2 | 1 | 0 |

It is clear that $(X, *, 0)$ is a bounded BCK-algebra (see [3]) and $F=\{1,3\}$ is c-BCKfilter.

Example 3.3: Let $X=\{0,1,2\}$ and a binary operation $*$ is defined by

| $*$ | 0 | 1 | 2 |
| :--- | :--- | :--- | :--- |
| 0 | 0 | 0 | 0 |
| 1 | 1 | 0 | 0 |
| 2 | 2 | 2 | 0 |

It is clear that $(X, *, 0)$ is a bounded BCK-algebra and $F=\{0,2\}$ is not c-BCK-filter since $\left(1^{*} * 0^{*}\right)^{*}=2 \in F$ and $\left(1^{*} * 2^{*}\right)^{*}=0 \in F$ but $1 \notin F$.
Proposition 3.4: Every BCK-filter in bounded BCK-algebra $X$ is a c-BCK-filter.
Proof : Let $F$ be a BCK-filter and let $\left(x^{*} * y^{*}\right)^{*} \in F, \forall y \in F$.
Since $F$ is BCK-filter, then $x \in F$. Thus $F$ is c-BCK-filter.
Remark 3.5 : The converse of Proposition 3.4 needs not be true in general as in the Example 3.2 $F=\{1,3\}$ is c-BCK-filter but it's not BCK-filter, since $\left(2^{*} * 1^{*}\right)^{*}=3 \in F$ but $2 \notin F$.

Corollary 3.6: In general $\{e\}, X$ are trivial c-BCK-filter.
Proposition 3.7: If $X$ is involutory BCK-algebra then every subset of $X$ contained $e$ is c-BCK-filter.
Proof: Clear by $\left(x^{*} * e^{*}\right)^{*}=x$ for all $x \in X$.
Example 3.8: Let $X=\{0,1,2,3,4\}$ and a binary operation $*$ is defined by

| $*$ | 0 | 1 | 2 | 3 | 4 |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 0 | 0 | 0 | 0 | 0 | 0 |
| 1 | 1 | 0 | 0 | 0 | 0 |
| 2 | 2 | 1 | 0 | 0 | 0 |
| 3 | 3 | 1 | 1 | 0 | 0 |
| 4 | 4 | 3 | 2 | 1 | 0 |

It is clear that $(X, * 0)$ is an involutory bounded BCK-algebra with unit 4 (see [4]) and $\{4\},\{0,4\},\{1,4\},\{2,4\},\{3,4\}, \cdots$ etc are c-BCK-filter.
Corollary 3.9 : If $X$ is bounded commutative BCK-algebra then every subset of $X$ contained $e$ is c-BCK-filter.

Proposition 3.10: If $X$ is bounded BCK-algebra, $|x|>2$ and $x^{*}=e$ for all $x \in X$ such that $x \neq e$ then
(1) Every a proper subset $F$ of $X$ contain 0 is not c-BCK-filter
(2) Every a proper subset $F$ of $X$ not contain 0 and contain $e$ is c-BCK-filter.

Proof :
(1) Since $\exists x \in X$ such that $\left(x^{*} * y^{*}\right)^{*} \in F, \forall y \in F$ but $x \notin F$.
(2) Since $\forall x \in X$ such that $\left(x^{*} * e^{*}\right)^{*}=0 \notin F$.

Remark 3.11: Note that the intersection and union of two c-BCK-filter are not necessary to be c-BCK-filter as shown in the following example.
Example 3.12: Let $X=\{0,1,2,3,4\}$ and a binary operation $*$ is defined

| $*$ | 0 | 1 | 2 | 3 | 4 |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 0 | 0 | 0 | 0 | 0 | 0 |
| 1 | 1 | 0 | 1 | 0 | 0 |
| 2 | 2 | 2 | 0 | 0 | 0 |
| 3 | 3 | 3 | 3 | 0 | 0 |
| 4 | 4 | 3 | 4 | 1 | 0 |

Then $(X, *, 0)$ is bounded BCK-algebra with unit 4 (see [4]). Now let $F_{1}=\{0,1,4\}$ and $F_{2}=\{0,3,4\}$, we can show easily that $F_{1}$ and $F_{2}$ are c-BCK-filter in $X$. But $F_{1} \cap F_{2}=$ $\{0,4\}$ cannot be c-BCK-filter, since $\left(2^{*} * 4^{*}\right)=0 \in F_{1} \cap F_{2}$ and $\left(2^{*} * 0^{*}\right)^{*}=4 \in F_{1} \cap F_{2}$, but $2 \notin F_{1} \cap F_{2}$.
So $F_{1} \cup F_{2}=\{0,1,3,4\}$ cannot be c-BCK-filter, since $\left(2^{*} * 4^{*}\right)^{*}=0 \in F_{1} \cup F_{2},\left(2^{*} * 1\right)^{*}=$ $3 \in F_{1} \cup F_{2},\left(\left(2^{*} * 3^{*}\right)^{*}=1 \in F_{1} \cup F_{2}\right.$ and $\left(2^{*} * 0\right)^{*}=4 \in F_{1} \cup F_{2}$, but $2 \notin F_{1} \cup F_{2}$.
Proposition 3.13: Let $f$ be isomorphism from a bounded BCK-algebra $X$ into a bounded BCK-algebra $Y$, the image of c-BCK-filter is c-BCK-filter.

Proof : Let $f$ be an isomorphism function from bounded BCK-algebra $X$ into bounded BCK-algebra $Y$ and let $F$ be a c-BCK-filter in $X$.

Then $e_{x} \in F$ so $\left(e_{x}\right)=e_{y} \in f(F)$, (by Lemma 2.13).
Now let $\left(x^{*} * y^{*}\right)^{*} \in F, \forall y \in f(F)$, then $f^{-1}\left(\left(x^{*} * y^{*}\right)^{*}\right) \in F, \forall f^{-1}(y) \in F$, (since $f$ is onto).
But $f^{-1}\left(\left(x^{*} * y^{*}\right)^{*}\right)=\left(\left(f^{-1}(x)\right)^{*} *\left(f^{-1}(y)\right)^{*}\right)^{*}$, by (Lemma 2.14(2)). Therefore $\left(\left(f^{-1}(x)\right)^{*} *\right.$ $\left.\left(f^{-1}(y)\right)^{*}\right)^{*} \in F, \forall f^{-1}(y) \in F$.
Since $F$ is c-BCK-filter in $X$, then $f^{-1}(x) \in F$. Thus $x \in f(F)$. That means $f(F)$ is c-BCK-filter in $Y$.

Proposition 3.14: Let $f$ be epimorphism from a bounded BCK-algebra $X$ into a bounded BCK-algebra $Y$, the inverse image of c-BCK-filter is c-BCK-filter.

Proof: Let $f$ be epimorphism from a bounded BCK-algebra $X$ into a bounded BCKalgebra $Y$ and let $D$ be a c-BCK-filter in $Y$, so $e_{y} \in D$.
Then $f\left(e_{x}\right)=e_{y} \in D$ so $e_{x} \in f^{-1}(D)$, (by Lemma 2.13).
Now let $\left(x^{*} * y^{*}\right)^{*} \in f^{-1}(D), \forall y \in f^{-1}(D)$, so $f\left(\left(x^{*} * y^{*}\right)^{*}\right) \in D, \forall f(y) \in D$, since $f$ is onto). But $f\left(\left(x^{*} * y^{*}\right)^{*}\right)=\left((f(x))^{*} *(f(y))^{*}\right)^{*} \in D, \forall f(y) \in D$. Then $f(x) \in D$ since $D$ is a c-BCK-filter, therefore $x \in f^{-1}(D)$. Then $f^{-1}(D)$ is c-BCK-filter.
Proposition 3.15 : Assume that $X$ is involutory. Then a nonempty subset $F$ of $X$ is a c-BCK-filter of $X$ if and only if satisfies
(1) $e \in F$
(2) $(y * x)^{*} \in F, \forall y \in F$ implies $x \in F$.

Proof : Let $F$ is c-BCK-filter, then $e \in F$ and let $(y * x)^{*} \in F, \forall y \in F$. Then $\left(x^{*} * y^{*}\right)^{*} \in F, \forall y \in F$ (since $X$ is involutory). Thus $x \in F$ (since $F$ is c-BCK-filter).

Conversely, let $\left(x^{*} * y^{*}\right)^{*} \in F, \forall y \in F$ since $X$ is involutory. Then $(y * x)^{*} \in F, \forall y \in F$ (since $X$ is involutory). Thus $y \in F$, then $F$ is c-BCK-filter.

Corollary 3.16 : Assume that $X$ is commutative. Then a nonempty subset $F$ of $X$ is a c-BCK-filter of $X$ if and only if satisfies
(1) $e \in F$
(2) $(y * x)^{*} \in F, \forall y \in F$ implies $x \in F$.

Proposition 3.17 : Let $X$ be a bounded BCK-algebra and $F$ be c-BCK-filter of $X$. If $x \leq y \forall x \in F$ then $y \in F$.
Proof: Let $x \leq y, \forall x \in F$ then $y^{*} \leq x^{*}$, since $\left(y^{*} * x^{*}\right)^{*}=(0)^{*}=e \in F$ and $F$ is c-BCK-filter then $y \in F$.
Definition 3.18: A subset $F$ of a BCK-algebra $X$ is said to be complete crazy-filter (c-Crazy-filter), if,
(1) $e \in F$
(2) $(y * x)^{*} \in F, \forall y \in F$ implies $x \in F$.

Example 3.19: Let $X=\{0,1,2,3,4\}$ and a binary operation $*$ is defined by

| $*$ | 0 | 1 | 2 | 3 | 4 |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 0 | 0 | 0 | 0 | 0 | 0 |
| 1 | 1 | 0 | 1 | 0 | 0 |
| 2 | 2 | 2 | 0 | 0 | 0 |
| 3 | 3 | 3 | 3 | 0 | 0 |
| 4 | 4 | 3 | 4 | 1 | 0 |

It is clear that $(X, *, 0)$ is a bounded BCK-algebra with unit 4 and $F=\{1,4\}$ is c-crazy-filter.
Proposition 3.20 : Every crazy filter in bounded BCK-algebra $X$ is c-crazy-filter.
Proof : Let $F$ be a crazy filter and let $(y * x)^{*} \in F, \forall y \in F$, since $F$ is crazy filter, then $x \in F$, thus $F$ is c-crazy-filter.

Remark 3.21: The converse of Proposition 3.20 needs not be true in general as in the example (3.19) $F=\{1,4\}$ is c-crazy-filter but it's not crazy-filter, since $(1 * 3)^{*}=4 \in F$ but $3 \notin F$.

Definition 3.22 : Let $F$ and $D$ be two subset of bounded BCK-algebra $X$ such that $F \subseteq D$, then $F$ is said to be closed with respect to $D$, if $\left(x^{*} * y^{*}\right)^{*} \in D, \forall y \in F$, then $\left(x^{*} * y^{*}\right)^{*} \in F, x \in X$.
Example 3.23: Let $X=\{0,1,2,3\}$ and a binary operation $*$ is defined by

| $*$ | 0 | 1 | 2 | 3 |
| :--- | :--- | :--- | :--- | :--- |
| 0 | 0 | 0 | 0 | 0 |
| 1 | 1 | 0 | 0 | 0 |
| 2 | 2 | 2 | 0 | 0 |
| 3 | 3 | 2 | 1 | 0 |

It is clear that $(X, *, 0)$ is a bounded BCK-algebra with unit 3
(1) Let $F=\{1,3\}$ and $D=\{0,1,3\}$, then $F$ is closed with respect to $D$.
(2) Let $F=\{0,3\}$ and $D=\{0,1,3\}$, then $F$ is not closed with respect to $D$, since $\left(1^{*} * 3^{*}\right)^{*}=1 \in D$ and $\left(1^{*} * 0^{*}\right)^{*}=3 \in D$, but $\left(1^{*} * 3^{*}\right)=1 \notin F$.

Proposition 3.24 : Let $F$ and $D$ be two subset of involutory bounded BCK-algebra $X$ such that $F \subseteq D$, then $F$ is said to be closed with respect to $D$, if and only if $(y * x)^{*} \in D, \forall y \in F$, then $(y * x)^{*} \in F, x \in X$.
Proof: Clear.
Proposition 3.25 : The union of family of closed with respect to $D$ is closed with respect to $D$.
Proof : Let $\left\{F_{i}: i \in \Delta\right\}$ be a family of closed with respect to $D$ and let $\left(x^{*} * y^{*}\right)^{*} \in$ $D, \forall y \in \bigcup_{i \in \Delta} F_{i}$, since $\forall i \in \Delta, F_{i}$ is closed with respect to $D$ then $\exists j \in \Delta$ such that $\left(x^{*} * y^{*}\right)^{*} \in D, \forall y \in F_{j}$, then $\left(x^{*} * y^{*}\right)^{*} \in F_{j}$. Thus $\left(x^{*} * y^{*}\right)^{*} \in \bigcup_{i \in \Delta} F_{i}$, then $\bigcup_{i \in \Delta} F_{i}$ is closed with respect to $D$.

Remark 3.26 : Note that the intersection of two closed with respect to $D$ is not closed with respect to $D$. As it is shown in the following example.
Example 3.27 : Let $X=\{0,1,2,3,4\}$ and a binary operation $*$ is defined

| $*$ | 0 | 1 | 2 | 3 | 4 | 5 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 1 | 1 | 0 | 1 | 1 | 0 | 0 |
| 2 | 2 | 2 | 0 | 0 | 0 | 0 |
| 3 | 3 | 3 | 2 | 0 | 2 | 0 |
| 4 | 4 | 2 | 1 | 1 | 0 | 0 |
| 5 | 5 | 3 | 4 | 1 | 2 | 0 |

It is clear that $(X, *, 0)$ is a bounded BCK-algebra with unit 5 (see[4]).
Let $D=\{0,1,2,3,5\}$ and $F_{1}=\{0,1,3,5\}, F_{2}=\{0,2,3,5\}$ are closed with respect to $D$, but $F_{1} \cap F_{2}=\{0,3,5\}$ is not closed with respect to $D$, since $(0 * 0)^{*}=5 \in D,(3 * 0)^{*}=$ $1 \in D$ and $(5 * 0)^{*}=0 \in D$, but $(3 * 0)^{*}=1 \notin F_{1} \cap F_{2}$.
Remark 3.28 : If $F \subseteq D$ and $F$ is c-BCK-filter, then $D$ is not in general c-BCK-filter, as in the following example.
Example 3.29 : Let $X=\{0,1,2\}$ and a binary operation $*$ is defined by

| $*$ | 0 | 1 | 2 |
| :--- | :--- | :--- | :--- |
| 0 | 0 | 0 | 0 |
| 1 | 1 | 0 | 0 |
| 2 | 2 | 2 | 0 |

It is clear that $(X, *, 0)$ is a bounded BCK-algebra with unit $2 F=\{2\}$ and $D=\{0,2\}$ $F$ is c-BCK-filter, but $D$ is not c-BCK-filter.
Proposition 3.30 : Let $F$ be c-BCK-filter of bounded BCK-algebra $X$ and $\phi \neq F \subseteq D$. If $F$ is closed with respect to $D$, then $D$ is c-BCK-filter.
Proof: Let $\left(x^{*} * y^{*}\right)^{*} \in D, \forall y \in D$. Since $F \subseteq D$, then $\left(x^{*} * y^{*}\right)^{*} \in D, \forall y \in F$. Since $F$ is closed with respect to $D$, then $\left(x^{*} * y^{*}\right)^{*} \in F, \forall y \in F$, since $F$ is c-BCK-filter, thus $x \in F$, consequently $x \in D$, then $D$ is c-BCK-filter.

## References

[1] Deeba E. Y., Filter theory of BCK-algebra, Math. Japon, 25 (1980), 631-639.
[2] Iseki K. and Tanaka S., An introduction to ideal theory of BCK-algebra, Math. Japanica, 23 (1978), 1-26.
[3] Meng Jie., BCK-filters, Math. Japan., 44 (1996), 119-129.
[4] Meng Jie. and Jun Y. B., BCK-algebras, Kyung Moon Sa Co., Seoul, Korean, (1994).
[5] Pelyan sun, Homomorphism theorems on dual ideals in BCK-algebras, Soochow Journal of Mathematics, 26(3) (July 2000), 309-316.
[6] Wiselaw A. Dudek and Young Bae Jun, Poor and Crazy Filter of BCK-algebra, (2007).
[7] Lmai Y. and Iseki K., On axiom system of propositional calculi XIV, Proc. Japan Academy, 42 (1966), 19-22.

