International J. of Pure \& Engg. Mathematics (IJPEM)
ISSN 2348-3881, Vol. 4 No. II (August, 2016), pp. 11-20

ON CERTAIN SUBCLASSES OF N-FOLD KOEBA TYPE SYMMETRIC FUNCTION

J. J. BHAMARE ${ }^{1}$ AND S. M. KHAIRNAR ${ }^{2}$
${ }^{1}$ Department of Applied Sciences,
S.S.V.P.S B.S Deore College of Engineering,
Deopur, Dhule, India
E-mail: jjbhamre2002@yahoo.co.in
${ }^{2}$ Department of Engineering Sciences, MIT Academy of Engineering, Alandi, Pune-412105, M. S., India
E-mail: smkhairnar2007@gmail.com

Abstract

In this present paper, we defined n-fold Koebe type functions $$
F_{b}(z)=\frac{z}{\left(1-z^{n+1}\right)^{b}}, b \geq 0, n \in \mathcal{N}
$$ in the unit disk. Some basic results of univalence, starlikeness and convexity of the function $F_{b}(z)$ are obtained in addition with the results of Miller, Mocanu and Reade' and Mocanu ${ }^{2}$. We have also investigated radius of starlikeness and convexity, also other related properties.

Key Words and Phrases : N-fold Koebe type functions, Starlikeness, Convexity, Radius of Starlikeness and Convexity.
2010 AMS Subject Classification : Primary 30C45.
(c) http: //www.ascent-journals.com

1. Introduction

Let \mathcal{A} be the class of analytic functions

$$
\begin{equation*}
F_{b}(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n} \tag{1.1}
\end{equation*}
$$

in the unit disc $\mathcal{U}=\{z:|z|<1\}$. For some α, we denote the following subclass of \mathcal{A} :

$$
\begin{gather*}
\mathcal{S}=\{f(z) \in \mathcal{A}: f(z) \text { is univalent in } \mathcal{U}\} \tag{1.2}\\
\mathcal{S}^{*}(\alpha)=\{f(z) \in \mathcal{A}: f(z) \text { is univalent and starlike of order } \alpha \text { in } \mathcal{U}\} \tag{1.3}\\
\mathcal{K}(\alpha)=\{f(z) \in \mathcal{A}: f(z) \text { is univalent and convex of order } \alpha \text { in } \mathcal{U}\} \tag{1.4}
\end{gather*}
$$

We set $\mathcal{S}^{*}=\mathcal{S}^{*}(0)$ and $\mathcal{K}=\mathcal{K}(0)$. We defined the following new subclasses of \mathcal{A}. For some α and β.

$$
\begin{equation*}
\mathcal{M}(\alpha, \beta)=\left\{f(z) \in \mathcal{A}: \mathcal{R} e\left\{(1-\alpha) z \frac{f^{\prime}(z)}{f(z)}+\alpha\left(1+z \frac{f^{\prime \prime}(z)}{f^{\prime}(z)}\right)\right\}>\beta \text { in } \mathcal{U}\right\} \tag{1.5}
\end{equation*}
$$

where $-\infty<\alpha<\infty$ and $\beta<1$.

$$
\begin{equation*}
\mathcal{N}(\alpha, \beta)=\left\{f(z) \in \mathcal{A}: \mathcal{R} e\left\{(1-\alpha) z \frac{f^{\prime}(z)}{f(z)}+\alpha\left(1+z \frac{f^{\prime \prime}(z)}{f^{\prime}(z)}\right)\right\}<\beta \text { in } \mathcal{U}\right\} \tag{1.6}
\end{equation*}
$$

where $-\infty<\alpha<\infty$ and $\beta>1$.
Note: These new classes are not necessarily subclasses of \mathcal{S}, we put $\mathcal{M}(\alpha)=\mathcal{M}(\alpha, 0)$.
The class $\mathcal{M}(\alpha)$ was first introduced by Mocanu ${ }^{2}$ who call it the class of α-convex (or α-starlike) functions and later Mocanu, Miller and Reade' studied it and shows that $\mathcal{M}(\alpha)$ is a subclass of \mathcal{S}^{*} for any real number α and also $\mathcal{M}(\alpha)$ is a subclass of \mathcal{K} for $\alpha \geq 1$. We note that $\mathcal{M}(0)=\mathcal{S}^{*}$ and $\mathcal{M}(1)=\mathcal{K}$. Mocanu first introduced $\mathcal{M}(\alpha)$ with $\frac{f(z) \cdot f^{\prime}(z)}{z} \neq 0$.
We will investigate some properties of the following Koebe type function

$$
\begin{equation*}
F_{b}(z)=\frac{z}{\left(1-z^{n+1}\right)^{b}}, \quad(b \geq 0, \quad n \in \mathcal{N}) . \tag{1.7}
\end{equation*}
$$

1.1 Preliminaries

We will describe some elementary equalities and inequalities without proof which are used in latter discussion. For $n \in \mathcal{N}$, it holds that

$$
\begin{equation*}
\mathcal{R} e\left\{\frac{1}{1-z^{n}}\right\}=-\frac{1}{2} \quad\left(|z|=1, \quad z^{n} \neq 0\right) \tag{1.8}
\end{equation*}
$$

$$
\begin{gather*}
\mathcal{R} e\left\{\frac{z^{n}}{1-z^{n}}\right\}=-\frac{1}{2}\left(|z|=1, \quad z^{n} \neq 1\right) \tag{1.9}\\
-\frac{1}{2}<\left\{-\frac{r^{n}}{1+r^{n}}\right\} \leq \mathcal{R} e\left\{\frac{z^{n}}{1-z^{n}}\right\} \leq\left\{\frac{r^{n}}{1-r^{n}}\right\}<\infty \tag{1.10}\\
-\infty<\left\{-\frac{r^{n}}{1-r^{n}}\right\} \leq \mathcal{R} e\left\{\frac{z^{n}}{1-z^{n}}\right\} \leq\left\{\frac{r^{n}}{1+r^{n}}\right\}<\frac{1}{2} \tag{1.11}
\end{gather*}
$$

where (1.2) and (1.3) are equivalent relation, so are (1.10) and (1.11) for $|z| \leq r<1$. Similarly we have

$$
\begin{equation*}
-\frac{k}{1-k}<-\frac{k r^{n}}{1-k r^{n}} \leq \mathcal{R} e\left\{\frac{k z^{n}}{1+k z^{n}}\right\} \leq \frac{k r^{n}}{1+k r^{n}}<\frac{k}{1+k}, \text { when } 0<k<1, \tag{1.12}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{k}{1+k}<\frac{k r^{n}}{1+k r^{n}} \leq \mathcal{R} e\left\{\frac{k z^{n}}{1+k z^{n}}\right\} \leq-\frac{k r^{n}}{1-k r^{n}}<-\frac{k}{1-k}, \text { when }-1<k<0 \tag{1.13}
\end{equation*}
$$

where (1.12) and (1.13) are equivalent relation for $|z| \leq r<1$. Further there holds

$$
\begin{equation*}
\frac{1}{1+|k|}<\frac{1}{1+|k| r^{n}} \leq \mathcal{R} e\left\{\frac{1}{1+k z^{n}}\right\} \leq \frac{1}{1-|k| r^{n}}<\infty \tag{1.14}
\end{equation*}
$$

for $|k|<1$ and $|z| \leq r<1$.

2. Univalency, Starlikeness and Convexity

Theorem 2.1 : The function defined by (1.7) is univalent if and only if

$$
\begin{equation*}
0 \leq(n+1) b \leq 2 \tag{2.1}
\end{equation*}
$$

Furthermore the condition (2.1) is necessary and sufficient for $F_{b}(z)$ defined by (1.7) to be a starlike function.
Proof: Since

$$
\begin{equation*}
F_{b}(z)=\frac{z}{\left(1-z^{n+1}\right)^{b}}, \quad b \geq 0 \tag{2.2}
\end{equation*}
$$

Therefore

$$
\begin{gathered}
F_{b}^{\prime}(z)=\frac{1+[(n+1) b-1] z^{n+1}}{\left(1-z^{n+1}\right)^{b+1}} \\
\Rightarrow|(n-1) b-1| \leq 1 \Rightarrow 0 \leq(n+1) b \leq 2
\end{gathered}
$$

Conversely, Suppose

$$
0 \leq(n+1) b \leq 2
$$

We have

$$
\begin{align*}
\mathcal{R} e\left\{\frac{z F_{b}^{\prime}(z)}{F_{b}(z)}\right\}= & \mathcal{R} e\left\{1+(n+1) b \frac{z^{n+1}}{1-z^{n+1}}\right\} \tag{2.3}\\
& >1-(n+1) \frac{b}{2} \in \mathcal{U} \text { \{using (1.10) \}}
\end{align*}
$$

Since $0 \leq(n+1) b \leq 2 \Rightarrow(n+1) \frac{b}{2} \leq 1$. Therefore

$$
\begin{equation*}
\mathcal{R} e\left\{\frac{z F_{b}^{\prime}(z)}{F_{b}(z)}\right\}>0 \tag{2.4}
\end{equation*}
$$

Thus $F_{b}(z) \in \mathcal{S}^{*}$ and $F_{b}(z) \in \mathcal{S}$. Hence

$$
F_{b}(z) \in \mathcal{S} \Leftrightarrow 0 \leq(n+1) b \leq 2 \Leftrightarrow \text { for } F_{b}(z) \in \mathcal{S}^{*}
$$

Theorem 2.2: The function defined by (1.7) is convex if

$$
\begin{equation*}
b=0 \text { or } b=1 \text { and } n=0 . \tag{2.5}
\end{equation*}
$$

Proof:

Case-i : If $b=0, \quad F_{b}(z)=z$ Therefore $F_{b}(z)$ is univalent in \mathcal{U}. Now

$$
F_{b}^{\prime}(z)=1, F_{b}^{\prime \prime}(z)=0
$$

so,

$$
\begin{equation*}
\mathcal{R} e\left\{1+z \frac{f_{b}^{\prime \prime}(z)}{f_{b}^{\prime}(z)}\right\}=\mathcal{R} e\{1+0\}=1>0 \tag{2.6}
\end{equation*}
$$

Therefore $F_{b}(z) \in \mathcal{K}(\alpha)$.
Case-ii : $b=1$ and $n=0$,

$$
\begin{gather*}
F_{b}(z)=\frac{z}{1-z}, \quad F_{b}^{\prime}(z)=\frac{1}{(1-z)^{2}}, \quad F_{b}^{\prime \prime}(z)=\frac{2}{(1-z)^{3}} \\
\mathcal{R} e\left\{1+z \frac{f_{b}^{\prime \prime}(z)}{f_{b}^{\prime}(z)}\right\}=\mathcal{R} e\left\{1+z \cdot \frac{2 z}{(1-z)}\right\}>\mathcal{R} e\left\{1-\frac{2}{(2)}\right\}=0 \tag{2.7}
\end{gather*}
$$

using (1.10).
So, $F_{b}(z) \in \mathcal{K}(\alpha)$. We must show that $F_{b}(z) \notin \mathcal{K}(\alpha)$ in any other cases. We have,

$$
\begin{align*}
\left\{1+z \frac{f_{b}^{\prime \prime}(z)}{f_{b}^{\prime}(z)}\right\} & =1-b(n+1)+\frac{(n+1)(b+1)}{1-z^{n+1}}-\frac{(n+1)}{1+[b(n+1)-1] z^{n+1}} \tag{2.8}\\
& =g(\xi)
\end{align*}
$$

so,

$$
\begin{equation*}
g(\xi)=1-b(n+1)+\frac{(n+1)(b+1)}{1-\xi}-\frac{(n+1)}{1+[b(n+1)-1] \xi} \tag{2.9}
\end{equation*}
$$

where $\xi=z^{n+1}$ (say).

$$
\begin{equation*}
g(\xi)=\left\{1+z \frac{f_{b}^{\prime \prime}(z)}{f_{b}^{\prime}(z)}\right\}, \quad \xi=z^{n+1}, \quad \text { Then } z \in \mathcal{U} \Leftrightarrow \xi \in \mathcal{U} \text {. } \tag{2.10}
\end{equation*}
$$

The following cases will arise.
Case i: When $b(n+1)<2$, then $F_{b}(z) \notin \mathcal{S}$. So $F_{b}(z) \notin \mathcal{K}$.
Case ii : When $b(n+1)<2$, then (2.9) becomes

$$
\begin{equation*}
g(\xi)=-1+\frac{n+3}{1-\xi}-\frac{n+1}{1+\xi} \tag{2.11}
\end{equation*}
$$

If we put $1+\xi=\rho$ i.e. $\xi=-1+\rho, \quad \rho>0$, a small number, it follows that $\xi \in \mathcal{U}$ and $\operatorname{Re}\{g(\xi)\} \rightarrow-\infty$ as $\rho=0$.
Hence there exist $\xi \in \mathcal{U}$ such that $\mathcal{R e}\{g(\xi)\}<0$. So, $F_{b}(z) \notin \mathcal{K}$
Case iii : When $1<b(n+1)<2$, we have $0<k<1 \quad($ since $k=b(n+1)-1)$ then from (2.9)

$$
\begin{equation*}
g(\xi)=-k+\frac{k+n+2}{1-\xi}-\frac{n+1}{1+k \xi} \tag{2.12}
\end{equation*}
$$

Then

$$
\begin{equation*}
g(-1)=-k+\frac{k+n+2}{1+1}-\frac{n+1}{1-k}<0 . \tag{2.13}
\end{equation*}
$$

On the other hand, since $\mathcal{R e}\{g(\xi)\}$ is continuous at $\xi=-1$, there exist $\xi_{o} \in \mathcal{U}$ sufficiently close to $\xi=-1$ such that $\mathcal{R} e\{g(\xi)\}<0$. So $F_{b}(z) \notin \mathcal{K}$.
Case iv : When $b(n+1)=1$, then from (2.9)

$$
\begin{gather*}
g(\xi)=\frac{n+2}{1-\xi}-\frac{n+1}{1}=\frac{1+(n+1) \xi}{1-\xi} \tag{2.14}\\
g(-1)=-\frac{n}{2}<0, \text { for } n \in \mathcal{N} \tag{2.15}
\end{gather*}
$$

So $F_{b}(z) \notin \mathcal{K}$.
Then, $F_{b}(z)$ in every case apart from (2.5). This completes the proof.

3. Radii of Univalence, Starlikeness and Convexity

Theorem 3.1: The function $F_{b}(z)$ defined by (1.7) with $(n+1) b-1>1$ is univalent and starlike for

$$
\begin{equation*}
|z|<\left\{\frac{1}{(n+1) b-1}\right\}^{\frac{1}{n}} \tag{3.1}
\end{equation*}
$$

This bound is the best possible for univalence and starlikeness.
Proof :

$$
\begin{align*}
\mathcal{R} e\left\{z_{f_{b}^{\prime}(z)}^{f_{b}(z)}\right\} & =\mathcal{R} e\left\{1+(n+1) b\left(\frac{z^{n+1}}{1-z^{n+1}}\right)\right\} \\
& \geq\left\{1+(n+1) b\left(-\frac{r^{n+1}}{1+r^{n+1}}\right)\right\}, \text { for }|z| \leq r<1 \tag{3.2}\\
& =\frac{1-[(n+1) b-1] r^{n+1}}{1+r^{n+1}}, \text { for }|z| \leq r<1
\end{align*}
$$

So, $F_{b}(z)$ is univalent and starlike in the disk

$$
\begin{equation*}
|z|<\left\{\frac{1}{(n+1) b-1}\right\}^{\frac{1}{n+1}} \tag{3.3}
\end{equation*}
$$

Because of $F_{b}^{\prime}\left(z_{0}\right)=0, \quad z_{0}^{n+1}=-\frac{1}{(n+1) b-1}$. This is the best possible bound.
Theorem 3.2: The function $F_{b}(z)$ defined by (1.7) with $(n+1) b-1>0$ is univalent and convex for

$$
\begin{equation*}
|z|<\sqrt[n+1]{t_{0}} \tag{3.4}
\end{equation*}
$$

where t_{0} is the smallest positive roots of the equation

$$
\begin{equation*}
h_{1}(t)=k^{2} t^{2}-(3 k+n k+n+1) t+1=0, k=(n+1) b-1 \tag{3.5}
\end{equation*}
$$

The radius of disk is given by (3.4) is best possible.
In particular $t_{0}=\frac{1}{n+1}$ when $(n+1) b=1$ and $t_{0}=(n+2)-\sqrt{(n+1)(n+3)}$ where $(n+1) b=2$.

Proof : We use

$$
\begin{equation*}
g(\xi)=-k+\frac{k+n+2}{1-\xi}-\frac{n+1}{1+k \xi}, \quad k=(n+1) b-1, \quad k \geq 0 \tag{3.6}
\end{equation*}
$$

Then

$$
\begin{align*}
\mathcal{R} e\{g(\xi)\}= & -k+\frac{k+n+2}{1+t}-\frac{n+1}{1-k t}<0, \quad \text { (using 1.14) } \\
& =\frac{k^{2} t^{2}-(3 k+n k+n+1) t+1}{(1-k t)(1+t)} \tag{3.7}
\end{align*}
$$

For $|\xi| \leq t<1 \quad$ when $0 \leq k \leq 1$ and for $|\xi| \leq t<\frac{1}{k} \quad$ when $k>1$. Therefore if t_{0} is the smallest positive root of (3.5) then $\mathcal{R} e\{g(\xi)\}>0$ for $|\xi|<t_{0}$. We can verify that $t_{0} \leq 1$ when $0 \leq k<1$ and $t_{0} \leq \frac{1}{k}$ when $k>1$. In fact
Case i : When $0 \leq k<1, \quad h_{1}(0)=1>0$ and

$$
h_{1}(1)=k^{2}-(3 k+n k+n)=k(k-3)-n(k+1) \leq 0
$$

Therefore

$$
0<t_{0} \leq 1
$$

Case ii : When $k>1, \quad h(0)=1>0$. and $h_{1}\left(\frac{1}{k}\right)=-(n+1)-\frac{(n+1)}{k}<0$. Therefore

$$
0<t_{0} \leq \frac{1}{k}
$$

Thus $F_{b}(z)$ is convex in $|z|<(n+1) \sqrt{t_{0}}$. Therefore this bound is the best possible.
Theorem 3.3: The function $F_{b}(z)$ defined by (1.7) with $-1<\{(n+1) b-1\}<0$ is convex for

$$
\begin{equation*}
|z|<\sqrt[n+1]{t_{1}} \tag{3.8}
\end{equation*}
$$

where t_{1} is the smallest positive root of the equation.

$$
\begin{equation*}
h_{2}(t)=k^{2} t^{2}+(3+n) k t+(n+1) t+1=0, k=(n+1) b-1 . \tag{3.9}
\end{equation*}
$$

The radius of disk is given by (3.8) is not the best possible.
Proof : $-1<(n+1) b-1<0$ i.e. $-1<k<0$

$$
\begin{equation*}
\mathcal{R} e\{g(\xi)\}=k+\frac{-k+n+2}{1+t}-\frac{n+1}{1+k t}=\frac{k^{2} t^{2}+(3+n) k t-(n+1) t+1}{(1+k t)(1+t)}>0 . \tag{3.10}
\end{equation*}
$$

For $|\xi| \leq t_{1}$.

$$
h_{2}(t)=k^{2} t^{2}+(3+n) k t-(n+1) t+1
$$

Then

$$
h_{2}(0)=1 \text { and } h_{2}(1)=k^{2}+(3+n) k-(n+1)+1<0
$$

Therefore

$$
0<t_{1} \leq 1
$$

Thus $F_{b}(z)$ is convex in $|z|<(n+1) \sqrt{t_{1}}$. Therefore this bound is the best possible.

4. Relation Between $f_{b}(z)$ and the Class $\mathcal{M}(\alpha, \beta)$ and $\mathcal{N}(\alpha, \beta)$

Theorem 4.1 : Corresponding to the function $F_{b}(z)$ defined by (1.7), let

$$
\begin{equation*}
\beta_{1}=\frac{[2-(n+1) b](b-\alpha)}{2 b} \quad \beta_{2}=\frac{[2-(n+1) b]^{2}-(n+1)^{2} \alpha b}{2[2-(n+1) b]} \tag{4.1}
\end{equation*}
$$

Case I: If $\alpha \geq 0$ then
i. $F_{b}(z) \in \mathcal{M}\left(\alpha, \beta_{1}\right)$ for $0<(n+1) b \leq 1$,
ii. $F_{b}(z) \in \mathcal{M}\left(\alpha, \beta_{2}\right)$ for $1 \leq(n+1) b<2$,

Case II: If $\alpha \leq 0$ and $b+\alpha>1$ then

$$
\begin{align*}
& \text { i. } F_{b}(z) \in \mathcal{M}\left(\alpha, \beta_{2}\right) \text { for } 0<(n+1) b \leq 1, \tag{4.3}\\
& i i . F_{b}(z) \in \mathcal{M}\left(\alpha, \beta_{1}\right) \text { for } 1 \leq(n+1) b<2
\end{align*}
$$

Case III: If $\alpha \leq 0$ and $b+\alpha<1$ then

$$
\begin{align*}
& \text { i. } F_{b}(z) \in \mathcal{N}\left(\alpha, \beta_{2}\right) \text { for } 0<(n+1) b \leq 1, \tag{4.4}\\
& \text { ii. } F_{b}(z) \in \mathcal{M}\left(\alpha, \beta_{2}\right) \text { for } 1 \leq(n+1) b<2
\end{align*}
$$

Remark 4.1: The parameter is the best value for any case.
Remark 4.2: $\beta_{1}=\beta_{2} \Leftrightarrow \alpha[(n+1) b-1]=0$.
Proof: We put

$$
\begin{align*}
w(z) & =\mathcal{R} e\left\{(1-\alpha) z \frac{f_{b}^{\prime}(z)}{f_{b}(z)}+\alpha\left(1+z \frac{f_{b}^{\prime \prime}(z)}{f_{b}^{\prime}(z)}\right)\right\} \\
& =1+(n+1)(b+\alpha)\left(\frac{z^{n+1}}{1-z^{n+1}}\right)+(n+1) \alpha\left(\frac{[(n+1) b-1] z^{n+1}}{1+[(n+1) b-1] z^{n+1}}\right) \tag{4.5}
\end{align*}
$$

Case I, i: If $\alpha \geq 0,0<[(n+1) b] \leq 1$ i. e. $-1<[(n+1) b-1] \leq 0$

$$
\begin{align*}
w(z) & >1-(n+1) \frac{(b+\alpha)}{2}+(n+1) \alpha\left(\frac{[(n+1) b-1]}{1+\lfloor(n+1) b-1]}\right), \quad z \in \mathcal{U} \\
& =1-(n+1) \frac{b}{2}+(n+1) \frac{\alpha}{2}-\frac{\alpha}{b} \tag{4.6}\\
& =\beta_{1}
\end{align*}
$$

We must have $\beta_{1}<1$ because of $w(0)=1$.
So $f_{b}(z) \in \mathcal{M}\left(\alpha, \beta_{1}\right)$ for $0<(n+1) b \leq 1$.
ii-If $\alpha \geq 0, \quad 1 \leq[(n+1) b]<2$ i. e. $0 \leq[(n+1) b-1]<1$,

$$
\begin{equation*}
w(z)>1-(n+1) \frac{(b+\alpha)}{2}-(n+1) \alpha\left(\frac{[(n+1) b-1]}{1+[(n+1) b-1]}\right) \quad z \in \mathcal{U} \tag{4.7}
\end{equation*}
$$

using (1.10) and (1.12)

$$
\begin{equation*}
w(z)=\frac{[2-(n+1) b]^{2}-(n+1)^{2} \alpha \cdot b}{2[2-(n+1) b]}=\beta_{2} \tag{4.8}
\end{equation*}
$$

We must have $\beta_{2}<1$ because of $w(0)=1$.
So $f_{b}(z) \in \mathcal{M}\left(\alpha, \beta_{2}\right)$ for $0 \leq[(n+1) b-1]<1$ i.e. $1 \leq[(n+1) b]<2$.

Case II, i : If $\alpha \leq 0, b+\alpha>1$ for $0<[(n+1) b] \leq 1$ i.e. $-1<[(n+1) b-1] \leq 0$

$$
\begin{align*}
w(z) & >1-(n+1) \frac{(b+\alpha)}{2}-(n+1) \alpha\left(\frac{[(n+1) b-1]}{1+[(n+1) b-1]}\right), \quad z \in \mathcal{U} \tag{4.9}\\
& =\beta_{2}
\end{align*}
$$

Thus $\beta_{2}<1$ because of $w(0)=1$ So $f_{b}(z) \in \mathcal{M}\left(\alpha, \beta_{2}\right)$ for $0<(n+1) b \leq 1$.
ii : If $\alpha \leq 0, b+\alpha>11 \leq[(n+1) b]<2$ i. e. $0 \leq[(n+1) b-1]<1$

$$
\begin{align*}
w(z) & >1-(n+1) \frac{(b+\alpha)}{2}+(n+1) \alpha\left(\frac{[(n+1) b-1]}{1+\lfloor(n+1) b-1]}\right), \tag{4.10}\\
& =\beta_{1}
\end{align*}
$$

Thus $\beta_{1}<1$ as $w(0)=1$
So $f_{b}(z) \in \mathcal{M}\left(\alpha, \beta_{1}\right)$ for $0 \leq[(n+1) b-1]<1$ i. e. $1 \leq[(n+1) b]<2$.
Case III, i : If $\alpha \leq 0, b+\alpha<1$ and $0<[(n+1) b] \leq 1$ i.e. $-1<[(n+1) b-1] \leq 0$.

$$
\begin{align*}
w(z) & <1-(n+1) \frac{(b+\alpha)}{2}-(n+1) \alpha\left(\frac{[(n+1) b-1]}{1-\lfloor(n+1) b-1]}\right), \quad z \in \mathcal{U} \tag{4.11}\\
& =\beta_{2}
\end{align*}
$$

Thus $\beta_{2}>1$ because of $w(0)=1$.
So $f_{b}(z) \in \mathcal{N}\left(\alpha, \beta_{2}\right)$ for $0<(n+1) b \leq 1$.
ii:If $\alpha \leq 0, b+\alpha<1$ for $1 \leq[(n+1) b]<2$ i. e. $0 \leq[(n+1) b-1]<1$

$$
\begin{align*}
w(z) & >1-(n+1) \frac{(b+\alpha)}{2}-(n+1) \alpha\left(\frac{[(n+1) b-1]}{1-\lfloor(n+1) b-1]}\right), \tag{4.12}\\
& =\beta_{2}
\end{align*}
$$

Thus $\beta_{2}<1$ because of $w(0)=1$.
So $f_{b}(z) \in \mathcal{M}\left(\alpha, \beta_{2}\right)$ for $1<(n+1) b \leq 2$.
Corollary 4.1 : The function $f_{b}(z)$ defined by (1.7) is in $\mathcal{M}(\alpha)$ if it satisfies one of the following three conditions

$$
\begin{gather*}
0 \leq \alpha \leq b \leq \frac{1}{n+1} \tag{4.13}\\
0 \leq \alpha \leq \frac{[2-(n+1) b]^{2}}{(n+1)^{2} b}, \quad \frac{1}{n+1} \leq b<\frac{2}{n+1} \tag{4.14}\\
-b<\alpha \leq 0 \tag{4.15}
\end{gather*}
$$

Proof : (4.13) follows from case I (i)
(4.14) follows from case I (ii) as Theorem 6.
(4.15) follows from case II (i) and case II (ii)

Corollary 4.2 : The function $f_{b}(z)$ in corollary 4.1 is univalent and starlike of order

$$
\begin{equation*}
1-\frac{(n+1) b}{2} \in \mathcal{U} \tag{4.16}
\end{equation*}
$$

Proof : If $\alpha=0$ in case II, the function $f_{b}(z)$ defined by (1.7) is univalent and starlike of order $1-\frac{(n+1) b}{2}$ Since

$$
\begin{equation*}
\mathcal{R} e\left(\frac{z f_{b}^{\prime}(z)}{f_{b}(z)}\right)>1-\frac{(n+1) b}{2} \tag{4.17}
\end{equation*}
$$

References

[1] Khairnar S. M. and More N. H., On certain classes of Koebe type function, International J. of physical Sciences, Ultra Science, 17(2) (2005), 195-202.
[2] Miller S. S., Mocanu P. T. and Reade M. O., All α-convex functions are univalent starlike. Proc. Amer. Math. Soc., 37 (1973), 553-554.
[3] Mocanu P. T., Use propxiete de convexite generalise theory and representation conform, Mathematica (cluj), 11(34) (1969), 127-133.
[4] Ahlfors L. V., Complex Analysis, Mc Graw Hill Book Co-Inc., New York, (1953).
[5] Duren P. L., Univalent Functions, Grundlehren der Mathematischen Wissenchaften, 259, Springer-Verlag, New York, (1983).
[6] Khairnar S. M. and More Meena, A certain family analytic and univalent functions with normalized conditions, ICM, UAE, (2008), 31-42.
[7] Khairnar S. M. and More Meena, Subclasses of analytic and univalent functions in the unit disk, Scientia Magna, Northwest University, Chaina, 3(2),(2007), 1-8.
[8] Khairnar S. M. and More Meena, Properties of a subclass of meromorphic univalent functions with positive coefficients, IJMSEA, I(1) (2007), 101-113.

