International J. of Pure & Engg. Mathematics (IJPEM) ISSN 2348-3881, Vol. 4 No. II (August, 2016), pp. 11-20

ON CERTAIN SUBCLASSES OF *N*-FOLD KOEBA TYPE SYMMETRIC FUNCTION

J. J. BHAMARE¹ AND S. M. KHAIRNAR²

 ¹ Department of Applied Sciences,
 S.S.V.P.S B.S Deore College of Engineering, Deopur, Dhule, India
 E-mail: jjbhamre2002@yahoo.co.in
 ² Department of Engineering Sciences, MIT Academy of Engineering,
 Alandi, Pune-412105, M. S., India
 E-mail: smkhairnar2007@gmail.com

Abstract

In this present paper, we defined n-fold Koebe type functions

$$F_b(z) = \frac{z}{(1-z^{n+1})^b}, b \ge 0, \ n \in \mathcal{N}$$

in the unit disk. Some basic results of univalence, starlikeness and convexity of the function $F_b(z)$ are obtained in addition with the results of Miller, Mocanu and Reade' and Mocanu². We have also investigated radius of starlikeness and convexity, also other related properties.

Key Words and Phrases : N-fold Koebe type functions, Starlikeness, Convexity, Radius of Starlikeness and Convexity.

2010 AMS Subject Classification : Primary 30C45.

© http://www.ascent-journals.com

1. Introduction

Let \mathcal{A} be the class of analytic functions

$$F_b(z) = z + \sum_{n=2}^{\infty} a_n z^n \tag{1.1}$$

in the unit disc $\mathcal{U} = \{z : |z| < 1\}$. For some α , we denote the following subclass of \mathcal{A} :

$$\mathcal{S} = \{ f(z) \in \mathcal{A} : f(z) \text{ is univalent in } \mathcal{U} \}$$
(1.2)

$$\mathcal{S}^*(\alpha) = \{ f(z) \in \mathcal{A} : f(z) \text{ is univalent and starlike of order } \alpha \text{ in } \mathcal{U} \}$$
(1.3)

$$\mathcal{K}(\alpha) = \{ f(z) \in \mathcal{A} : f(z) \text{ is univalent and convex of order } \alpha \text{ in } \mathcal{U} \}$$
(1.4)

We set $S^* = S^*(0)$ and $\mathcal{K} = \mathcal{K}(0)$. We defined the following new subclasses of \mathcal{A} . For some α and β .

$$\mathcal{M}(\alpha,\beta) = \{f(z) \in \mathcal{A} : \mathcal{R}e\left\{(1-\alpha)z\frac{f'(z)}{f(z)} + \alpha\left(1+z\frac{f''(z)}{f'(z)}\right)\right\} > \beta \text{ in } \mathcal{U}\}$$
(1.5)

where $-\infty < \alpha < \infty$ and $\beta < 1$.

$$\mathcal{N}(\alpha,\beta) = \{f(z) \in \mathcal{A} : \mathcal{R}e\left\{(1-\alpha)z\frac{f'(z)}{f(z)} + \alpha\left(1+z\frac{f''(z)}{f'(z)}\right)\right\} < \beta \text{ in } \mathcal{U}\}$$
(1.6)

where $-\infty < \alpha < \infty$ and $\beta > 1$.

Note : These new classes are not necessarily subclasses of \mathcal{S} , we put $\mathcal{M}(\alpha) = \mathcal{M}(\alpha, 0)$. The class $\mathcal{M}(\alpha)$ was first introduced by Mocanu² who call it the class of α -convex (or α -starlike) functions and later Mocanu, Miller and Reade' studied it and shows that $\mathcal{M}(\alpha)$ is a subclass of \mathcal{S}^* for any real number α and also $\mathcal{M}(\alpha)$ is a subclass of \mathcal{K} for $\alpha \geq 1$. We note that $\mathcal{M}(0) = \mathcal{S}^*$ and $\mathcal{M}(1) = \mathcal{K}$. Mocanu first introduced $\mathcal{M}(\alpha)$ with $\frac{f(z).f'(z)}{z} \neq 0$.

We will investigate some properties of the following Koebe type function

$$F_b(z) = \frac{z}{(1-z^{n+1})^b}, \quad (b \ge 0, \quad n \in \mathcal{N}).$$
 (1.7)

1.1 Preliminaries

We will describe some elementary equalities and inequalities without proof which are used in latter discussion. For $n \in \mathcal{N}$, it holds that

$$\mathcal{R}e\left\{\frac{1}{1-z^n}\right\} = -\frac{1}{2} \ (|z|=1, \ z^n \neq 0)$$
 (1.8)

$$\mathcal{R}e\left\{\frac{z^{n}}{1-z^{n}}\right\} = -\frac{1}{2} \ (|z|=1, \ z^{n}\neq 1)$$
(1.9)

$$-\frac{1}{2} < \left\{-\frac{r^n}{1+r^n}\right\} \le \mathcal{R}e\left\{\frac{z^n}{1-z^n}\right\} \le \left\{\frac{r^n}{1-r^n}\right\} < \infty$$
(1.10)

$$-\infty < \left\{-\frac{r^n}{1-r^n}\right\} \le \mathcal{R}e\left\{\frac{z^n}{1-z^n}\right\} \le \left\{\frac{r^n}{1+r^n}\right\} < \frac{1}{2}$$
(1.11)

where (1.2) and (1.3) are equivalent relation, so are (1.10) and (1.11) for $|z| \le r < 1$. Similarly we have

$$-\frac{k}{1-k} < -\frac{kr^n}{1-kr^n} \le \mathcal{R}e\left\{\frac{kz^n}{1+kz^n}\right\} \le \frac{kr^n}{1+kr^n} < \frac{k}{1+k}, \text{ when } 0 < k < 1, \quad (1.12)$$

and

$$\frac{k}{1+k} < \frac{kr^n}{1+kr^n} \le \mathcal{R}e\left\{\frac{kz^n}{1+kz^n}\right\} \le -\frac{kr^n}{1-kr^n} < -\frac{k}{1-k}, \text{ when } -1 < k < 0 \quad (1.13)$$

where (1.12) and (1.13) are equivalent relation for $|z| \le r < 1$. Further there holds

$$\frac{1}{1+|k|} < \frac{1}{1+|k|r^n} \le \mathcal{R}e\left\{\frac{1}{1+kz^n}\right\} \le \frac{1}{1-|k|r^n} < \infty, \tag{1.14}$$

for |k| < 1 and $|z| \le r < 1$.

2. Univalency, Starlikeness and Convexity

Theorem 2.1 : The function defined by (1.7) is univalent if and only if

$$0 \le (n+1)b \le 2$$
 (2.1)

Furthermore the condition (2.1) is necessary and sufficient for $F_b(z)$ defined by (1.7) to be a starlike function.

 $\mathbf{Proof}: \ \mathbf{Since}$

$$F_b(z) = \frac{z}{(1-z^{n+1})^b}, \quad b \ge 0.$$
 (2.2)

Therefore

$$F'_b(z) = \frac{1 + [(n+1)b - 1]z^{n+1}}{(1 - z^{n+1})^{b+1}}$$

$$\Rightarrow |(n-1)b - 1| \le 1 \Rightarrow 0 \le (n+1)b \le 2.$$

Conversely, Suppose

$$0 \le (n+1)b \le 2.$$

We have

$$\mathcal{R}e\left\{\frac{zF_{b}'(z)}{F_{b}(z)}\right\} = \mathcal{R}e\left\{1 + (n+1)b\frac{z^{n+1}}{1-z^{n+1}}\right\}$$

> 1 - (n+1) $\frac{b}{2} \in \mathcal{U}$ {using (1.10)}

Since $0 \le (n+1)b \le 2 \Rightarrow (n+1)\frac{b}{2} \le 1$. Therefore

$$\mathcal{R}e\left\{\frac{zF_b'(z)}{F_b(z)}\right\} > 0 \tag{2.4}$$

Thus $F_b(z) \in \mathcal{S}^*$ and $F_b(z) \in \mathcal{S}$. Hence

$$F_b(z) \in \mathcal{S} \Leftrightarrow 0 \le (n+1)b \le 2 \Leftrightarrow \text{ for } F_b(z) \in \mathcal{S}^*$$

Theorem 2.2 : The function defined by (1.7) is convex if

$$b = 0 \text{ or } b = 1 \text{ and } n = 0.$$
 (2.5)

 ${\bf Proof}:$

Case-i : If b = 0, $F_b(z) = z$ Therefore $F_b(z)$ is univalent in \mathcal{U} . Now

$$F'_b(z) = 1, \ F''_b(z) = 0$$

so,

$$\mathcal{R}e\left\{1+z\frac{f_b''(z)}{f_b'(z)}\right\} = \mathcal{R}e\{1+0\} = 1 > 0.$$
(2.6)

Therefore $F_b(z) \in \mathcal{K}(\alpha)$.

Case-ii : b = 1 and n = 0,

$$F_b(z) = \frac{z}{1-z}, \quad F'_b(z) = \frac{1}{(1-z)^2}, \quad F''_b(z) = \frac{2}{(1-z)^3}$$
$$\mathcal{R}e\left\{1 + z\frac{f''_b(z)}{f'_b(z)}\right\} = \mathcal{R}e\left\{1 + z.\frac{2z}{(1-z)}\right\} > \mathcal{R}e\left\{1 - \frac{2}{(2)}\right\} = 0$$
(2.7)

using (1.10).

So, $F_b(z) \in \mathcal{K}(\alpha)$. We must show that $F_b(z) \notin \mathcal{K}(\alpha)$ in any other cases. We have,

$$\left\{1 + z \frac{f_b''(z)}{f_b'(z)}\right\} = 1 - b(n+1) + \frac{(n+1)(b+1)}{1 - z^{n+1}} - \frac{(n+1)}{1 + [b(n+1) - 1]z^{n+1}} = g(\xi)$$

$$(2.8)$$

so,

$$g(\xi) = 1 - b(n+1) + \frac{(n+1)(b+1)}{1-\xi} - \frac{(n+1)}{1+[b(n+1)-1]\xi}$$
(2.9)

where $\xi = z^{n+1}$ (say).

$$g(\xi) = \left\{ 1 + z \frac{f_b''(z)}{f_b'(z)} \right\}, \quad \xi = z^{n+1}, \quad \text{Then} \quad z \in \mathcal{U} \Leftrightarrow \xi \in \mathcal{U}.$$
(2.10)

The following cases will arise.

Case i: When b(n+1) < 2, then $F_b(z) \notin S$. So $F_b(z) \notin \mathcal{K}$.

Case ii : When b(n + 1) < 2, then (2.9) becomes

$$g(\xi) = -1 + \frac{n+3}{1-\xi} - \frac{n+1}{1+\xi}$$
(2.11)

If we put $1 + \xi = \rho$ i.e. $\xi = -1 + \rho$, $\rho > 0$, a small number,

it follows that $\xi \in \mathcal{U}$ and $\mathcal{R}e\{g(\xi)\} \to -\infty$ as $\rho = 0$.

Hence there exist $\xi \in \mathcal{U}$ such that $\mathcal{R}e\{g(\xi)\} < 0$. So, $F_b(z) \notin \mathcal{K}$

Case iii: When 1 < b(n+1) < 2, we have 0 < k < 1 (since k = b(n+1) - 1) then from (2.9)

$$g(\xi) = -k + \frac{k+n+2}{1-\xi} - \frac{n+1}{1+k\xi}$$
(2.12)

Then

$$g(-1) = -k + \frac{k+n+2}{1+1} - \frac{n+1}{1-k} < 0.$$
(2.13)

On the other hand, since $\mathcal{R}e\{g(\xi)\}$ is continuous at $\xi = -1$, there exist $\xi_o \in \mathcal{U}$ sufficiently close to $\xi = -1$ such that $\mathcal{R}e\{g(\xi)\} < 0$. So $F_b(z) \notin \mathcal{K}$.

Case iv : When b(n + 1) = 1, then from (2.9)

$$g(\xi) = \frac{n+2}{1-\xi} - \frac{n+1}{1} = \frac{1+(n+1)\xi}{1-\xi}$$
(2.14)

$$g(-1) = -\frac{n}{2} < 0, \text{ for } n \in \mathcal{N}$$
 (2.15)

So $F_b(z) \notin \mathcal{K}$.

Then, $F_b(z)$ in every case apart from (2.5). This completes the proof.

3. Radii of Univalence, Starlikeness and Convexity

Theorem 3.1: The function $F_b(z)$ defined by (1.7) with (n+1)b-1 > 1 is univalent and starlike for

$$|z| < \left\{\frac{1}{(n+1)b-1}\right\}^{\frac{1}{n}} \tag{3.1}$$

This bound is the best possible for univalence and starlikeness.

Proof :

$$\mathcal{R}e\left\{z\frac{f_{b}'(z)}{f_{b}(z)}\right\} = \mathcal{R}e\left\{1 + (n+1)b\left(\frac{z^{n+1}}{1-z^{n+1}}\right)\right\}$$
$$\geq \left\{1 + (n+1)b\left(-\frac{r^{n+1}}{1+r^{n+1}}\right)\right\}, \text{ for } |z| \le r < 1$$
$$= \frac{1 - [(n+1)b - 1]r^{n+1}}{1+r^{n+1}}, \text{ for } |z| \le r < 1$$
(3.2)

So, $F_b(z)$ is univalent and starlike in the disk

$$|z| < \left\{\frac{1}{(n+1)b-1}\right\}^{\frac{1}{n+1}} \tag{3.3}$$

Because of $F'_b(z_0) = 0$, $z_0^{n+1} = -\frac{1}{(n+1)b-1}$. This is the best possible bound. **Theorem 3.2**: The function $F_b(z)$ defined by (1.7) with (n+1)b-1 > 0 is univalent and convex for

$$|z| < \sqrt[n+1]{t_0}$$
 (3.4)

where t_0 is the smallest positive roots of the equation

$$h_1(t) = k^2 t^2 - (3k + nk + n + 1)t + 1 = 0, \ k = (n+1)b - 1.$$
(3.5)

The radius of disk is given by (3.4) is best possible.

In particular $t_0 = \frac{1}{n+1}$ when (n+1)b = 1 and $t_0 = (n+2) - \sqrt{(n+1)(n+3)}$ where (n+1)b = 2.

 $\mathbf{Proof}: \ \mathrm{We} \ \mathrm{use}$

$$g(\xi) = -k + \frac{k+n+2}{1-\xi} - \frac{n+1}{1+k\xi}, \quad k = (n+1)b - 1, \quad k \ge 0$$
(3.6)

Then

$$\mathcal{R}e\{g(\xi)\} = -k + \frac{k+n+2}{1+t} - \frac{n+1}{1-kt} < 0, \quad (\text{using 1.14})$$
$$= \frac{k^2t^2 - (3k+nk+n+1)t+1}{(1-kt)(1+t)}.$$
(3.7)

For $|\xi| \le t < 1$ when $0 \le k \le 1$ and for $|\xi| \le t < \frac{1}{k}$ when k > 1. Therefore if t_0 is the smallest positive root of (3.5) then $\mathcal{R}e\{g(\xi)\} > 0$ for $|\xi| < t_0$. We can verify that $t_0 \le 1$ when $0 \le k < 1$ and $t_0 \le \frac{1}{k}$ when k > 1. In fact **Case i**: When $0 \le k < 1$, $h_1(0) = 1 > 0$ and

$$h_1(1) = k^2 - (3k + nk + n) = k(k - 3) - n(k + 1) \le 0,$$

Therefore

$$0 < t_0 \le 1$$

Case ii : When k > 1, h(0) = 1 > 0. and $h_1(\frac{1}{k}) = -(n+1) - \frac{(n+1)}{k} < 0$. Therefore

$$0 < t_0 \le \frac{1}{k}$$

Thus $F_b(z)$ is convex in $|z| < (n+1)\sqrt{t_0}$. Therefore this bound is the best possible. \Box **Theorem 3.3**: The function $F_b(z)$ defined by (1.7) with $-1 < \{(n+1)b - 1\} < 0$ is convex for

$$|z| < \sqrt[n+1]{t_1}$$
 (3.8)

where t_1 is the smallest positive root of the equation.

$$h_2(t) = k^2 t^2 + (3+n)kt + (n+1)t + 1 = 0, \ k = (n+1)b - 1.$$
(3.9)

The radius of disk is given by (3.8) is not the best possible. **Proof**: -1 < (n+1)b - 1 < 0 i.e. -1 < k < 0

$$\mathcal{R}e\{g(\xi)\} = k + \frac{-k+n+2}{1+t} - \frac{n+1}{1+kt} = \frac{k^2t^2 + (3+n)kt - (n+1)t + 1}{(1+kt)(1+t)} > 0.$$
(3.10)

For $|\xi| \leq t_1$.

$$h_2(t) = k^2 t^2 + (3+n)kt - (n+1)t + 1$$

Then

$$h_2(0) = 1$$
 and $h_2(1) = k^2 + (3+n)k - (n+1) + 1 < 0$

Therefore

$$0 < t_1 \le 1$$

Thus $F_b(z)$ is convex in $|z| < (n+1)\sqrt{t_1}$. Therefore this bound is the best possible. \Box

4. Relation Between $f_b(z)$ and the Class $\mathcal{M}(\alpha, \beta)$ and $\mathcal{N}(\alpha, \beta)$ Theorem 4.1 : Corresponding to the function $F_b(z)$ defined by (1.7), let

$$\beta_1 = \frac{[2 - (n+1)b](b-\alpha)}{2b} \qquad \beta_2 = \frac{[2 - (n+1)b]^2 - (n+1)^2\alpha b}{2[2 - (n+1)b]} \tag{4.1}$$

Case I: If $\alpha \geq 0$ then

$$i.F_{b}(z) \in \mathcal{M}(\alpha,\beta_{1}) \text{ for } 0 < (n+1)b \leq 1,$$

$$ii.F_{b}(z) \in \mathcal{M}(\alpha,\beta_{2}) \text{ for } 1 \leq (n+1)b < 2,$$
Case II: If $\alpha \leq 0$ and $b + \alpha > 1$ then
$$i.F_{b}(z) \in \mathcal{M}(\alpha,\beta_{2}) \text{ for } 0 < (n+1)b \leq 1,$$

$$ii.F_{b}(z) \in \mathcal{M}(\alpha,\beta_{1}) \text{ for } 1 \leq (n+1)b < 2,$$
Case III: If $\alpha \leq 0$ and $b + \alpha < 1$ then
$$i.F_{b}(z) \in \mathcal{N}(\alpha,\beta_{2}) \text{ for } 0 < (n+1)b \leq 1,$$

$$ii.F_{b}(z) \in \mathcal{M}(\alpha,\beta_{2}) \text{ for } 0 < (n+1)b \leq 1,$$

$$ii.F_{b}(z) \in \mathcal{M}(\alpha,\beta_{2}) \text{ for } 1 \leq (n+1)b < 2,$$

$$(4.4)$$

Remark 4.1 : The parameter is the best value for any case. **Remark 4.2** : $\beta_1 = \beta_2 \Leftrightarrow \alpha[(n+1)b - 1] = 0$. **Proof** : We put

$$w(z) = \mathcal{R}e\left\{(1-\alpha)z\frac{f'_{b}(z)}{f_{b}(z)} + \alpha\left(1+z\frac{f''_{b}(z)}{f'_{b}(z)}\right)\right\}$$

$$= 1 + (n+1)(b+\alpha)\left(\frac{z^{n+1}}{1-z^{n+1}}\right) + (n+1)\alpha\left(\frac{[(n+1)b-1]z^{n+1}}{1+[(n+1)b-1]z^{n+1}}\right)$$
(4.5)

Case I, i : If $\alpha \ge 0$, $0 < [(n+1)b] \le 1$ i. e. $-1 < [(n+1)b-1] \le 0$

$$w(z) > 1 - (n+1)\frac{(b+\alpha)}{2} + (n+1)\alpha \left(\frac{[(n+1)b-1]}{1+[(n+1)b-1]}\right), \quad z \in \mathcal{U}$$

= $1 - (n+1)\frac{b}{2} + (n+1)\frac{\alpha}{2} - \frac{\alpha}{b}$
= β_1 (4.6)

We must have $\beta_1 < 1$ because of w(0) = 1. So $f_b(z) \in \mathcal{M}(\alpha, \beta_1)$ for $0 < (n+1)b \le 1$. ii-If $\alpha \ge 0$, $1 \le [(n+1)b] < 2$ i. e. $0 \le [(n+1)b - 1] < 1$,

$$w(z) > 1 - (n+1)\frac{(b+\alpha)}{2} - (n+1)\alpha \left(\frac{[(n+1)b-1]}{1 + [(n+1)b-1]}\right) \quad z \in \mathcal{U},$$
(4.7)

using (1.10) and (1.12)

$$w(z) = \frac{[2 - (n+1)b]^2 - (n+1)^2 \alpha b}{2[2 - (n+1)b]} = \beta_2$$
(4.8)

We must have $\beta_2 < 1$ because of w(0) = 1. So $f_b(z) \in \mathcal{M}(\alpha, \beta_2)$ for $0 \leq [(n+1)b - 1] < 1$ i.e. $1 \leq [(n+1)b] < 2$.

Case II, i: If $\alpha \le 0$, $b + \alpha > 1$ for $0 < [(n+1)b] \le 1$ i.e. $-1 < [(n+1)b-1] \le 0$

$$w(z) > 1 - (n+1)\frac{(b+\alpha)}{2} - (n+1)\alpha \left(\frac{[(n+1)b-1]}{1 + [(n+1)b-1]}\right), \quad z \in \mathcal{U}$$

$$= \beta_2$$
(4.9)

Thus $\beta_2 < 1$ because of w(0) = 1 So $f_b(z) \in \mathcal{M}(\alpha, \beta_2)$ for $0 < (n+1)b \le 1$. ii : If $\alpha \le 0$, $b + \alpha > 1$ $1 \le [(n+1)b] < 2$ i. e. $0 \le [(n+1)b - 1] < 1$

$$w(z) > 1 - (n+1)\frac{(b+\alpha)}{2} + (n+1)\alpha \left(\frac{[(n+1)b-1]}{1 + [(n+1)b-1]}\right),$$

= β_1 (4.10)

Thus $\beta_1 < 1$ as w(0) = 1So $f_b(z) \in \mathcal{M}(\alpha, \beta_1)$ for $0 \le [(n+1)b-1] < 1$ i. e. $1 \le [(n+1)b] < 2$. Case III, i : If $\alpha \le 0$, $b + \alpha < 1$ and $0 < [(n+1)b] \le 1$ i.e. $-1 < [(n+1)b-1] \le 0$.

$$w(z) < 1 - (n+1)\frac{(b+\alpha)}{2} - (n+1)\alpha \left(\frac{[(n+1)b-1]}{1 - [(n+1)b-1]}\right), \quad z \in \mathcal{U}$$

= β_2 (4.11)

Thus $\beta_2 > 1$ because of w(0) = 1. So $f_b(z) \in \mathcal{N}(\alpha, \beta_2)$ for $0 < (n+1)b \le 1$. ii:If $\alpha \le 0$, $b + \alpha < 1$ for $1 \le [(n+1)b] < 2$ i. e. $0 \le [(n+1)b-1] < 1$ $w(z) \ge 1$ $(n+1)^{(b+\alpha)}$ $(n+1)\alpha \left(\frac{[(n+1)b-1]}{2} \right)$

$$w(z) > 1 - (n+1)\frac{(b+\alpha)}{2} - (n+1)\alpha \left(\frac{1(n+1)b-1}{1 - [(n+1)b-1]}\right),$$

= β_2 (4.12)

Thus $\beta_2 < 1$ because of w(0) = 1.

So $f_b(z) \in \mathcal{M}(\alpha, \beta_2)$ for $1 < (n+1)b \le 2$.

Corollary 4.1: The function $f_b(z)$ defined by (1.7) is in $\mathcal{M}(\alpha)$ if it satisfies one of the following three conditions

$$0 \le \alpha \le b \le \frac{1}{n+1} \tag{4.13}$$

$$0 \le \alpha \le \frac{[2 - (n+1)b]^2}{(n+1)^2b}, \quad \frac{1}{n+1} \le b < \frac{2}{n+1}$$
(4.14)

$$-b < \alpha \le 0 \tag{4.15}$$

Proof : (4.13) follows from case I (i)

(4.14) follows from case I (ii) as Theorem 6.

Corollary 4.2: The function $f_b(z)$ in corollary 4.1 is univalent and starlike of order

$$1 - \frac{(n+1)b}{2} \in \mathcal{U} \tag{4.16}$$

Proof: If $\alpha = 0$ in case II, the function $f_b(z)$ defined by (1.7) is univalent and starlike of order $1 - \frac{(n+1)b}{2}$ Since

$$\mathcal{R}e\left(\frac{zf_b'(z)}{f_b(z)}\right) > 1 - \frac{(n+1)b}{2} \tag{4.17}$$

References

- Khairnar S. M. and More N. H., On certain classes of Koebe type function, International J. of physical Sciences, Ultra Science, 17(2) (2005), 195-202.
- [2] Miller S. S., Mocanu P. T. and Reade M. O., All α-convex functions are univalent starlike. Proc. Amer. Math. Soc., 37 (1973), 553-554.
- [3] Mocanu P. T., Use propriete de convexite generalise theory and representation conform, Mathematica (cluj), 11(34) (1969), 127-133.
- [4] Ahlfors L. V., Complex Analysis, Mc Graw Hill Book Co-Inc., New York, (1953).
- [5] Duren P. L., Univalent Functions, Grundlehren der Mathematischen Wissenchaften, 259, Springer-Verlag, New York, (1983).
- [6] Khairnar S. M. and More Meena, A certain family analytic and univalent functions with normalized conditions, ICM, UAE, (2008), 31-42.
- [7] Khairnar S. M. and More Meena, Subclasses of analytic and univalent functions in the unit disk, Scientia Magna, Northwest University, Chaina, 3(2),(2007), 1-8.
- [8] Khairnar S. M. and More Meena, Properties of a subclass of meromorphic univalent functions with positive coefficients, IJMSEA, I(1) (2007), 101-113.