International J. of Pure \& Engg. Mathematics (IJPEM)
ISSN 2348-3881, Vol. 4 No. II (August, 2016), pp. 21-26

PAIRED NEIGHBOURHOOD SET ON INTERVAL GRAPHS

Y. LAKSHMI NAIDU ${ }^{1}$ AND SARANYA C. R. ${ }^{2}$
${ }^{1}$ Department of Mathematics, Sri Sathya Sai Institute of Higher Learning,
Anantapur Campus, A.P. 515001, India
${ }^{2}$ Department of Mathematics,
Smt. Eswaramma High School,
Prasanthinilayam, A. P. 515134, India

Abstract

In this paper we study the paired neighbourhood set problem on interval graphs. Given an interval graph G with end points sorted, we give an $0(n+m)$ algorithm to find a paired neighbourhood set, where n and m denote the number of vertices and number of edges respectively.

1. Introduction

Let $G(V, E)$ be a graph. The closed neighbourhood of a vertex $v \in V$ in G is defined as v and the set of vertices that are adjacent to v in G. The closed neighbourhood is denoted by $N[v]$. A set S of vertices in G is called a neighbourhood set of G if $G=\bigcup_{v \in S}\langle N[v]\rangle$, where $\langle N[v]\rangle$ is the subgraph induced by $N[v]$. A neighbourhood set with minimum

Key Words : Interval graphs, Paired neighbourhood set, Algorithm.
2010 AMS Subject Classification : Primary: 05Cxx- 05C85, Secondary: 68R10.
(c) http: //www.ascent-journals.com
cardinality is called a minimum neighbourhood set. A subset S of V is called a paired neighbourhood set, if S is a neighbourhood set and the induced subgraph on S has a perfect matching.
A graph $G(V, E)$ is called an intersection graph for a family \mathcal{F} of a non empty set, if there is a one-to-one correspondence between \mathcal{F} and V such that two sets in \mathcal{F} have non empty intersection if and only if their corresponding vertices in V are adjacent. If \mathcal{F} is a family of intervals on a real line, then G is called an interval graph for \mathcal{F}. Each interval is represented as a vertex and there is an edge between two vertices if the corresponding intervals intersect each other.
Interval graphs have found applications in a wide range of fields such as genetics, scheduling, computer science etc., they have been studied by many researchers $[1,2,3]$. Neighbourhood and Paired neighbourhood set problems have been researched in [4,5,6,7]. In the following sections we present an algorithm to find a minimum paired neighbourhood set of an interval graph and also give the proof of correctness of the algorithm.

2. Preliminaries

Let $I=\{1,2,3, \cdots, n\}$ be a family of intervals on real line. Each interval in I is represented by $\left[a_{i}, b_{i}\right]$ for $i=1,2, \cdots, n$. Here a_{i} is called the left endpoint and b_{i} is called the right endpoint of interval i. The intervals are labelled in increasing order of their right endpoints. This ordering is possible and can be obtained in $0(n+m)$ time, where n is the number of vertices and m is the number of edges as in [2].

For each interval i we define $\operatorname{IEB}(i)$ as the set of intervals whose right endpoints are less than a_{i}, that is set of intervals ending before $i . \max a(\operatorname{IEB}(i))$ is the interval with largest left endpoint ending before i. mate (i) be the interval that intersects i with minimum left endpoint and $\operatorname{Pred}(i)$ is the interval that intersects i with minimum left endpoint and whose right endpoint is less than b_{i}.
Following the above definitions, we present an algorithm MPN to find the minimum paired neighbourhood of an interval graph $G[I]$.
Let $I=\{1,2,3, \cdots, n\}$ be a family of intervals on real line, we introduce two intervals $n+1$ and $n+2$ with $a_{n+1}=2 n+1, a_{n+2}=2 n+2, b_{n+1}=2 n+3$ and $b_{n+2}=2 n+4$. Let I_{p} be the set of intervals obtained by augmenting I with the two intervals $n+1$ and $n+2$. The following algorithm finds the minimum paired neighbourhood set of interval
graph $G[I]$.

3. Algorithm MPN

Input: Family of intervals $I_{p}=\{1,2,3, \cdots, n, n+1, n+2\}$
Output: A minimum paired neighbourhood set MPN of $G\left[I_{p}\right]$.
Step 1 : Start
Step 2: Find $\max a(I E B(j))$ for all $j \in I_{p}$.
Step 3: Find mate (j) for all $j \in I_{p}$.
Step 4: Find $\operatorname{Pred}(j)$ for all $j \in I_{p}$
Step 5: $M P N(0)=0$
Step 6 : For $j=1$ to $n+2$ do
m be the interval with maximum left endpoint in the set
$a(\operatorname{IEB}(\min (j, \operatorname{mate}(j))))$
$m=\max a(\operatorname{IEB}(\min (j, \operatorname{mate}(j))))$
Step 7: Let $k=\operatorname{pred}(m)$
Step 8: MPN $(j)=\{\operatorname{mate}(j), j) \cup M P N(k)$.
Step 9 : End.
Output: $M P N(n+2)$.

4. Proof of Correctness

We prove that the algorithm is correct in the sense that the output $M P N(n+2)$ is minimum paired neighbourhood of $G\left[I_{p}\right]$.
Lemma 1 : The intervals whose left endpoints are between j and mate (j) intersects j or mate (j).
Proof: Since the intervals are labelled in the increasing order of their right endpoints, the proof of the statement follows immediately.
Lemma 2: Let j and m be two intervals such that $m=\max a(\operatorname{IEB}(\min (j, \operatorname{mate}(j))))$ then j and m do not intersect.
Proof: By definition $m=\max a(\operatorname{IEB}(\min (j$, mate $(j))))$, two different cases arise here.
Case (i) : $\min (j, \operatorname{mate}(j))=j$.
In this case, by definition m is an interval which ends before j and hence they do not intersect.

Case (ii) : $\min (j, \operatorname{mate}(j))=\operatorname{mate}(j)$.
By definition of mate (j), the left endpoint of mate (j) is the minimum among all intervals which intersect j. In this case too m is an interval which ends before j. Hence they do not intersect.

Theorem 1 : For any interval j, the set $\{j, \operatorname{mate}(j), k, \operatorname{mate}(k)\}$ where $k=\operatorname{pred}(m)$ and $m=\max a(\operatorname{IEB}(\min (j, \operatorname{mate}(j))))$ forms a paired neighbourhood set for the induced graph of the intervals from k to j.
Proof: Let $H=G[k, \cdots, j]$ and $H^{\prime}=G[N[j, \operatorname{mate}(j), k, \operatorname{mate}(k)]]$.
The proof is done if we show that all the vertices and all the edges in H are contained in H^{\prime}.

By using the definition of $\operatorname{IEB}(j)$ and the definition of k, if there is an interval which does not belong to $N[j, \operatorname{mate}(j), k$, mate $(k)]$, then k cannot be the $\operatorname{pred}(m)$ which is a contradiction since $k=\operatorname{pred}(m)$. Thus $N[j, \operatorname{mate}(j), k, \operatorname{mate}(k)]$ contains all the intervals from k to j.
Hence, all the vertices of H are in H^{\prime}.
Now, we must show that all the edges of H are in H^{\prime}. Suppose there is an edge which belongs to H but is not in H^{\prime}. Then $(x, y) \notin H^{\prime}$ implies that both x and y does not belong to $N[j]$ or $N[\operatorname{mate}(j)]$ or $N[k]$ or $N[\operatorname{mate}(k)]$. Without loss of generality let $x \in N[j, \operatorname{mate}(j)]$ and $y \in N[k, \operatorname{mate}(k)]$.
Then by Lemma 2, it is clear that $x \notin N[k$, $\operatorname{mate}(k)]$. Then by the definitions of $I E B$ and $\operatorname{pred}(j), k$ cannot be $\operatorname{pred}(j)$, which is a contradiction.
Hence $x \in N[k$, mate $(k)]$, therefore $(x, y) \in H^{\prime}$.

$$
\therefore \quad H \subseteq H^{\prime} .
$$

Theorem 2: The algorithm MPN produces the minimum paired neighbourhood set of $G(I)$.
Proof : From Lemma 2 and Theorem 1, it is clear that MPN produces a paired neighbourhood set of $G[I]$. We have to show that the paired neighbourhood set produced by MPN is the minimum paired neighbourhood set of $G\left[I_{p}\right]$.
Let $m_{t}=\max a\left(\min \left(I_{t}, \operatorname{mate}\left(I_{t}\right)\right)\right.$ and $I_{t-1}=\operatorname{pred}\left(m_{t}\right)$.
Suppose $M P N=\left\{I_{1}\right.$, mate $\left(I_{1}\right), \cdots, I_{t}$, mate $\left.\left(I_{t}\right)\right\}$. Therefore $|M P N|=2 t$.
Let S be any minimum paired neighbourhood of $G\left[I_{p}\right]$, then it is enough to show that
$|M P N| \leq|S|$. Consider any two consecutive pairs say $\left(I_{j}, \operatorname{mate}\left(I_{j}\right)\right)$ and $\left(I_{j+1}\right.$, mate $\left.\left(I_{j+1}\right)\right)$, then by Theorem 1, $H=G\left[I_{j} \cdots I_{j+1}\right]$ is contained in $H^{\prime}=G\left[N\left[I_{j}\right.\right.$, mate $\left(I_{j}\right)$, $\left.\left.I_{j+1}, \operatorname{mate}\left(I_{j+1}\right)\right]\right]$.
Suppose (I_{m}, mate $\left(I_{m}\right)$) is a pair of intervals in I such that $G\left[I_{m}\right.$, mate $\left.\left(I_{m}\right)\right] \nsubseteq H^{\prime}$. Then since S is minimum neighbourhood of $G[I]$, there is a pair in induced graph of S, such that $G\left[I_{m}\right.$, mate $\left.\left(I_{m}\right)\right] \cup H^{\prime}$ is covered by it. Thus for any two consecutive pairs in $M P N$ there is at least one pair in S. As there are t such pairs in $M P N$, there must be atleast t such pairs in S. Thus $|S| \geq 2 t$.

$$
\therefore|M P N| \leq|S| .
$$

Hence $M P N$ is a minimum paired neighbourhood set.

Time complexity :

Theorem 3: Given an interval family labelled in increasing order of their right endpoints, the minimum paired neighbourhood $G[I]$ of can be found in $0(n+m)$ time.
Proof : By an algorithm given by Chang [2], to find $\max a(\operatorname{IEB}(j))$ for all $j \in I_{p}$ given in step 1 , it would take $0(n)$ time. The time taken to perform step 2 and step 3 is at most $0(m)$. Since all the values used in the for loop are already available, to find m given in the loop takes $0(n)$ time.
Thus overall time complexity to find minimum paired neighbourhood is $\mathbf{0}(\mathbf{n}+\mathbf{m})$.

5. Conclusion

Given an interval graph with endpoints sorted, we have presented an $0(n+m)$ time algorithm to solve the minimum paired neighbourhood problem on interval graphs. The result can be extended to find minimum paired neighbourhood of circular-arc graphs.

References

[1] Golumbic M. C., Interval graphs and related topics, Discrete Math., 55 (1985), 113-121.
[2] Chang M. S., Efficient algorithms for the domination problems on interval and circulararc graphs, SIAM. J. Comp., 27 (1998), 1671-1694.
[3] Cheng T. C. E., Kang L. Y., Ng C. T., Paired domination on Interval and Circular-arc graphs, Discrete Applied Mathematics, 155 (2007), 2077-2086.
[4] Arumugam S., Sivagnanam C., Neighbourhood Connected Domination in Graphs, J. Combin. Math, Combin. Comput., 73 (2010), 55-64.
[5] Arumugam S., Sivagnanam C., Neighbourhood Connected Domatic Number of a graph, J. Combin. Math, Combin. Comput., 75 (2010), 239-249.
[6] Sampath Kumar E. and Neeralagi Prabha S., The neighbourhood number of graph, Indian J. Pure appl. Math., 16(2) (1985), 126-132.
[7] Soner N. D. and Chaluvaraju B., The paired neighbourhood number of a graph, Proc. Jangjeon Math. Soc., 8(1) (2005), 113-121.

