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Abstract

In this paper, we prove that, like in the case of Navier-Stokes equations, energy
equality remains valid for solution of three dimensional incompressible magnetohy-
drodynamic equations with solution belonging to an appropriate function space.

1. Introduction

Magnetohydrodynamics (MHD) is the study of flows of fluids which are electrically

conducting and move in a magnetic field. The simplest example of an electrically con-

ducting fluid is a liquid metal like mercury or liquid sodium. MHD treats, in particular,

conducting fluids either in liquid form or gaseous form. The equations describing the

motion of a viscous incompressible conducting fluid moving in a magnetic field are de-

rived by coupling Navier-Stokes equations with Maxwell equations together with the

expression for the Lorentz force. The domain Ω in which the fluid is moving is either a
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bounded subset of R3 or the whole space R3. In this paper we restrict our considerations

to a bounded domain Ω.

During past four or five decades, there has been an extensive study of qualitative prop-

erties such as existence, uniqueness, regularity and stability of solutions of the MHD

equations. This is evident from the work of Duvaut and Lions [1], Sanchez Palencia E.

[2], Sermange and Temam [3] and other researchers working in the field. The methods

from nonlinear functional analysis such as Galerkin approximation, fixed point theo-

rems, monotone and coercive operators, semi group theory etc have been applied to

establish many a qualitative properties for compressible as well as incompressible MHD

flows. The function spaces used are either Holder spaces or Sobolev spaces which are

the appropriate function spaces for using these methods and the theory of elliptic oper-

ators. In proving the existence of solutions of MHD equations, energy inequality plays

a significant role. The energy inequality is given as:

|(u,B)(t)|22 + 2ν
∫ t

t0

|(∇u,∇B)(s)|22ds ≤ |(u,B)(t0)|22 +
∫ t

t0

(f(s), u(s))ds,

for all 0 ≤ t0 ≤ t < T .

We explain the notations below.

The natural question which then arises is that under what conditions on the initial and

boundary data, this energy inequality becomes an equality. For three dimensional in-

compressible Navier-Stokes equations, such an equality has been derived under different

conditions on s and q where a solution u ∈ Ls(0, T ;Lq(Ω)). The first paper in the series

was published by J. L. Lions in 1960 and the last one is by Leslie and Shvydkoy in 2016.

We refer the reader to the references [4] to [13] for results under various conditions on

s and q. In the present paper, following some of these works, we prove that energy

equality holds for solution of three dimensional incompressible MHD equations when

solution belongs to an appropriate function space.

Thus, in Section 2, we formulate the problem and describe appropriate function spaces

that will be used in the proof. We also state our main theorem.

In Section 3, we prove a preliminary lemma, and then give the proof of the theorem.

We make some comments on the main result as our concluding remarks. The paper

ends with the list of references.
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2. Formulation of Problem and Statement of Main Theorem

We consider the viscous incompressible three-dimensional magnetohydrodynamic (MHD)

equations:
∂tu− ν∆u+ u · ∇u−B · ∇B +∇p = f

∂tB − λ∆B + u · ∇B −B · ∇u = 0

∇ · u = 0 and ∇ ·B = 0

u(x, t) = 0, B(x, t) = 0, x ∈ ∂Ω

(u,B)|t=0 = (u0, B0)


(1)

where Ω ⊂ R3 is a smooth bounded domain, u = (x, t) is the velocity field, B = B(x, t) is

the magnetic field, ν > 0 is the kinematic coefficient of viscosity, λ > 0 is the coefficient

of magnetic diffusivity, p = p(x, t) is the pressure, f = f(x, t) is an external force. We

assume f ∈ L1([0, T );L2(Ω)).

When initial data (u0, B0) ∈ L2(Ω)×L2(Ω) is divergence free and T > 0, it is well-known

that there exists a weak solution (u,B) to the system (1) in the class

LH = L∞loc([0, T );L2(Ω)× L2(Ω)) ∩ L2
loc([0, T );H1(Ω)×H1(Ω)) (2)

satisfying the following equations simultaneously:∫ T

0
{−(u, ∂tϕ) +ν(∇u,∇ϕ) + (u.∇u, ϕ)− (B.∇B,ϕ)}dt = (u0, ϕ(0)) +

∫ T

0
(f, ϕ)dt (3)

∫ T

0
{−(B, ∂tψ) + λ(∇B,∇ψ) + (u · ∇B,ψ)− (B · ∇u, ψ)}dt = (B0, ψ(0)) (4)

where, ϕ,ψ ∈ C∞0 ([0, T )× Ω) are the test functions such that ∇ · ϕ = 0 and ∇ · ψ = 0.

See, for example, ref. [3].

Now, equations (3) and (4) in their stronger forms can be written as,

(u(t), ϕ(t)) +
∫ t

0{−(u, ∂sϕ) + ν(∇u,∇ϕ) + (u · ∇u, ϕ)− (B.∇B,ϕ)}ds

= (u0, ϕ(0)) +
∫ t

0 (f, ϕ)ds
(5)

and

(B(t), ψ(t))+
∫ t

0
{−(B, ∂sψ)+λ(∇B,∇ψ)+(u.∇B,ψ)−(B.∇u, ψ)}ds = (B0, ψ(0)) (6)
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for all t ∈ [0, T ) and ϕ,ψ as before.

To proceed further, we recall some standard definitions:

Let us define

H = {u ∈ L2(Ω) : ∇ · u = 0, u · n|∂Ω = 0}. (7)

Let p : L2(Ω)→ H be the L2-orthogonal projection.

Let the Stokes operator A be defined as

Au = −p∆u. (8)

We denote V s = D(As/2), s > 0, the domain of the fractional power of A and let

V = {u ∈ H1(Ω) : ∇ · u = 0, u|∂Ω = 0}. (9)

The L2(Ω) inner product is denoted by (·, ·) and the corresponding L2(Ω) norm by | · |.
We endow V with the norm ‖u‖ = |∇u|. Here, H1(Ω) is the standard Sobolev space.

We now state our main theorem:

Theorem : Every weakly continuous weak solution (u(t), B(t)) of (1) satisfying con-

ditions (5) and (6) simultaneously on [0, T ) with (u,B) ∈ LH ∩ L3([0, T );D(A5/12) ×
D(A5/12)) satisfies the energy equality,

|(u,B)(t)|22 + 2ν
∫ t

t0

|(∇u,∇B)(s)|22ds = |(u,B)(t0)|22 +
∫ t

t0

(f(s), u(s))ds,

for all 0 ≤ t0 ≤ t < T .

Here, for simplicity, we have chosen λ = ν.

Now, we introduce some more notations which will be useful to prove the main theorem.

We define an orthonormal basis of eigenvectors {wn} in H and a sequence of positive

eigenvalues {λn}, such that

Awn = λnwn, wn ∈ D(A) (10)

and

0 < λ1 ≤ λ2 ≤ · · · ≤ λn ≤ · · · , lim
n→∞

λn =∞. (11)

Then we can write,

u =
∞∑
n=1

(u,wn)wn, for any u ∈ H. (12)
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We denote un = (u,wn) and define the operator As by,

Asu =
∞∑
n=1

λsnunwn, for s > 0 (13)

and the space

V s =

{
u ∈ H : u =

∞∑
n=1

unwn, ‖u‖2s =
∞∑
n=1

λsn|un|2 <∞

}
. (14)

So, V s = D(As/2). We denote V 1 by V .

Now, let us denote B(u, v) = p(u · ∇v) ∈ V ′, for u, v ∈ V where, V ′ is the dual of V .

Hence, we rewrite (1) as the following differential equations in V ′ :

∂tu+ νAu+ B(u, u)− B(B,B) = g (15)

∂tB + λAB + B(u,B)− B(B, u) = 0 (16)

where g = pf.

We denote the trilinear form b(u, v, w) = 〈B(u, v), w〉, which has the following properties:

b(u, v, w) = −b(u,w, v), u, v, w ∈ V

and b(u, v, v) = 0, for all u, v ∈ V .

Let us define

Pku =
∑

n:λn≤k
unwn, u ∈ H. (17a)

Let u ∈ V β and we denote u1 = Pku, u
h = u − u1. Thus, as k → ∞, uh → 0 in the

norm.

Similarly, we define

PkB =
∑

n:λn≤k
Bnwn, B ∈ H (17b)

where Bn = (B,wn).

Let B ∈ V β and we denote B1 = PkB,B
h = B − B1. Thus, as k → ∞, Bh → 0 in the

norm.

We use the following inequalities:

‖u1‖β ≤ kβ−α‖u1‖α

‖uh‖α ≤ kα−β‖uh‖β

 (18)
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and
‖B1‖β ≤ kβ−α‖B1‖α

‖Bh‖α ≤ kα−β‖Bh‖β

 (19)

whenever β > α.

3. Proof of the Main Theorem

We need the following lemma to prove the main Theorem:

Lemma : Let (u(t), B(t)) be a weakly continuous weak solution of (1) on [0, T ). Then,

|(u,B)(t)|2 + 2ν
∫ t
t0
‖(u,B)‖2ds = |(u,B)(t0)|2 + 2

∫ t
t0

(g, u)ds

2 lim
k→∞

∫ t
t0

[b(u, u1, u) + b(B,B, u1) + b(u,B1, B) + b(B, u,B1)]ds

for all 0 ≤ t0 ≤ t < T. (20)

Proof : We can see that (u1, B1) ∈ C([0, T );V ×V ) and (∂tu1, ∂tB
1) ∈ L2([0, T );V ×V ).

If we put u1 as a test function in (5), then we get

|u1(t)|2 − |u1(t0)|2 + 2ν
∫ t
t0
‖u1‖2ds− 2

∫ t
t0

(g, u1)ds

= 2
∫ t
t0
b(u, u1, u)ds+ 2

∫ t
t0
b(B,B, u1)ds.

(21)

Similarly, if we put B1 as a test function in (6), we get

|B1(t)|2 − |B1(t0)|2 + 2λ
∫ t

t0

‖B1‖2ds = 2
∫ t

t0

b(u,B1, B)ds+ 2
∫ t

t0

b(B, u,B1)ds. (22)

Here, the limit of the right hand side of both the equations exists as k →∞.

By taking λ = ν, and adding (21) and (22) lemma gets proved.

To prove the theorem, in view of the lemma, it is sufficient to show that,

lim
k→∞

∫ T

0
[b(u, u1, u) + b(B,B, u1) + b(u,B1, B) + b(B, u,B1)]ds = 0. (23)

For this, we write b(u, u1, u) = b(uh + u1, u1, uh + u1). Hence,

b(u, u1, u) = b(uh, u1, uh) + b(u1, u1, uh) + b(uh, u1, u1) + b(u1, u1, u1). (24)

Similarly we get,

b(B,B, u1) = b(Bh, Bh, u1) + b(B1, Bh, u1) + b(Bh, B1, u1) + b(B1, B1, u1). (25)
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b(u,B1, B) = b(uh, B1, B1) + b(uh, B1, Bh) + b(u1, B1, Bh) + b(u1, B1, B1). (26)

b(B, u,B1) = b(Bh, uh, B1) + b(B1, uh, B1) + b(Bh, u1, B1) + b(B1, u1, B1). (27)

In (24) - (27), using properties of b(u, v, w), we observe that

b(uh, u1, u1) = 0, b(u1, u1, u1) = 0, b(uh, B1, B1) = 0 and b(u1, B1, B1) = 0.

Also, b(B1, B1, u1) = −b(B1, u1, B1).

Hence, we estimate the remaining terms by using the standard estimate

|b(u, v, w)| ≤ ‖u‖s1‖v‖s2+1‖w‖s3 (28)

where, s1 + s2 + s3 ≥ 3/2.

Now, let us set s1 = s2 = s3 = 1/2.

To estimate the first term of (24), we use (28) and get

|b(uh, u1, uh)| ≤ ‖uh‖21/2‖u
1‖3/2.

By (18) we get,

‖uh‖1/2 ≤ k−1/3‖uh‖5/6

‖u1‖3/2 ≤ k2/3‖u1‖5/6

Thus

|b(uh, u1, uh)| ≤ ‖uh‖25/6‖u
1‖5/6. (29)

Similarly,

|b(Bh, Bh, u1)| ≤ ‖Bh‖25/6‖u
1‖5/6 (30)

|b(uh, B1, Bh)| ≤ ‖uh‖5/6‖B1‖5/6‖Bh‖5/6 (31)

|b(Bh, uh, B1)| ≤ ‖Bh‖5/6‖uh‖5/6‖B1‖5/6 (32)

Now, we set s1 = 5/6, s2 = 0, s3 = 2/3.

Again using (18), (19) and (28) we obtain

|b(u1, u1, uh)| ≤ ‖u1‖25/6‖u
h‖5/6 (33)

|b(B1, Bh, u1)| ≤ ‖B1‖5/6‖Bh‖5/6‖u1‖5/6 (34)

|b(Bh, B1, u1)| ≤ ‖Bh‖5/6‖B1‖5/6‖u1‖5/6 (35)
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|b(u1, B1, Bh)| ≤ ‖u1‖5/6‖B1‖5/6‖Bh‖5/6 (36)

|b(B1, uh, B1)| ≤ ‖B1‖25/6‖u
h‖5/6 (37)

|b(Bh, u1, B1)| ≤ ‖Bh‖5/6‖u1‖5/6‖B1‖5/6 (38)

In addition, we can write,

|b(uh, u1, uh)| ≤ ‖u‖35/6 (39)

|b(Bh, Bh, u1)| ≤ ‖B‖25/6‖u‖5/6 (40)

|b(uh, B1, Bh)| ≤ ‖u‖5/6‖B‖25/6 (41)

|b(Bh, uh, B1)| ≤ ‖B‖25/6‖u‖5/6 (42)

|b(u1, u1, uh)| ≤ ‖u‖35/6 (43)

|b(B1, Bh, u1)| ≤ ‖u‖5/6‖B‖25/6 (44)

|b(Bh, B1, u1)| ≤ ‖u‖5/6‖B‖25/6 (45)

|b(u1, B1, Bh)| ≤ ‖u‖5/6‖B‖25/6 (46)

|b(B1, uh, B1)| ≤ ‖u‖5/6‖B‖25/6 (47)

|b(Bh, u1, B1)| ≤ ‖u‖5/6‖B‖25/6. (48)

Now, combining the estimates from (29) to (38), we get

lim
k→∞

∫ T

0
[|b(u, u1, u)|+ |b(B,B, u1)|+ |b(u,B1, B)|+ |b(B, u,B1)|]ds

≤ lim
k→∞

∫ T

0
[‖uh‖25/6‖u

1‖5/6 + ‖Bh‖25/6‖u
1‖5/6

+2‖B1‖5/6‖Bh‖5/6‖uh‖5/6 + ‖u1‖25/6‖u
h‖5/6 + ‖B1‖25/6‖u

h‖5/6

+4‖B1‖5/6‖Bh‖5/6‖u1‖5/6]ds.

Using the standard product norm and Young’s inequality we get

lim
k→∞

∫ T

0
[|b(u, u1, u)|+ |b(B,B, u1)|+ |b(u,B1, B)|+ |b(B, u,B1)|]ds

≤ lim
k→∞

∫ T

0
[2‖(u1, B1)‖5/6‖(uh, Bh)‖25/6 + 3‖(uh, Bh)‖5/6‖(u1, B1)‖25/6]ds.

By virtue of the inequalities (39) - (48), we can apply the Dominated Convergence

Theorem and conclude that the limit on RHS exists.
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Moreover, since ‖(uh, Bh)‖5/6 → 0 in the limit, RHS → 0 in L1([0, T )) as k →∞.

Thus, by taking λ = ν, we get

|(u,B)(t)|2 + 2ν
∫ t

t0

‖(u,B)‖2ds = |(u,B)(t0)|2 + 2
∫ t

t0

(g, u)ds,

which is the desired energy equality.

4. Concluding Remarks

In this paper, we have proved that for a smooth bounded domain Ω ⊂ R3, if a weak

solution (u,B) ∈ LH∩L3([0, T );D(A5/12))×D(A5/12) then the solution (u,B) satisfies

the energy equality. In a recent paper [13], Leslie and Shvydkoy found new LqLp con-

ditions on solutions of the 3D incompressible Navier-Stokes equations which guarantee

that the energy equality survives a one-point singularity. It would be interesting to see

if this result can be extended to the present MHD case.
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