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Abstract

By means of certain differential operator we introduce and investigate two sub-
classes T*(p, A, ¢, d, &) and KT*(p, A, 9,9, ) of p-valently analytic functions. The
various results obtained here for each of these classes .we have attempted to obtain
coefficient estimate, distortion theorem, radius of starlikeness, convexity and clo-
sure theorem for the classes I'*(p, A, ¢, 6, ) and KT™*(p, A, ¢, 9, ).

1. Introduction

This paper devoted to study of multivalent functions and its various properties. With
the help of differential operator we have introduced and investigated two subclasses
I (p, A\, ¢,0,) and KT (p, A, ¢, 9, ) of p-valent and analytic functions. We have dis-

cussed properties of these two classes.
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Let A(p) be the class which contains the functions h(w) where
h(w)=uwP + > azw” (1.1)
rz=p+1
which areregular and p-valent in E for p € N.

Definition 1 : h(w) € A(p) is in the subclass I'(p, A, ¢, 0, o) if

Sw(DE™ (2 (r, p)h(w))) + Aw? (DG (S (r, p)h(w)))
(1 = N (DL(Q(r, )h(w))) + w(DE (2 (r, p)h(w)))

—(6-9¢)| <a

weE qeNU{0},0<a<1l,0eR,p<1, p>q,7,06<1

Further more a function h(w) € A(p) is said to be in the subclass KT'(p, A, ¢, 0, «) if
wh!(w) € T(p, \, ¢, 8, ).

Let T'(p) be the subclass of A(p) containing the functions of the form

(o)
h(w) = wP — Z aw”, az >0 (1.2)
r=p+1
T(p, A\, ¢,0,) and KT*(p, A\, 9,0, ) are the classes which are the intersection of the
classes T'(p, A, ¢, 0, ) and KT'(p, A, ¢, 0, ) respectively with T'(p).

Define Q,(a,p) as an operator on h(w) as follows

o0 T + I
Qp(r, p)h(w) = wP — Z < n 7) a;w”.
WS \P Y
The operator ,(r, p) is the operator which closely comparable to the Salagean derivative
operator.

D& h(w) is the order differential operator for h(w) € A(p) defined in (1.1)

p! B oo x”/ (i-}-’y)r B
DL (Qy(r,p)h(w)) = wP™9 — a, w1 p>q.
(lr ) = 6 g x%;ﬂw—qﬂ P+

2. Coefficient Estimates

Theorem 1 : A function h(w) given by (1.2) is in I™*(p, A, ¢, 6, ) if and only if

=1
2 i <!

r=p+1
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P2la(l=A4+p—q) = Ap—)p—q—1) =6 —q) + (6 — 6)(1 — \)]

\IJ(.%') — (p—q)!

wi!.(m)r[)\(fﬂ—qxx—q—1)+d>(w—q)—(5—¢>)(1—)\)+a(1_)\+x_q)]'

Proof : Suppose h(w) is in T™*(p, A, ¢, 0, ) Thus

Sw(DE (p(r,p)h(w))) + Aw? (DG (Q(r, p) h(w)))
(1 = N(DL((r, p)h(w))) + w(DE (R (r, p)h(w)))

—(6—¢)

we have

AP — a)(p— g —1) + ¢ — q) — (6 — §)(1 — N)JuwP I~

¥ 2 (22) e - ) — g - 1) + 6z — @) — (6 - 9)(1 - W]agu
r=p+1

(pgilq)![l —A+p—quwri— (zi!q)g (ﬁ%) 1 —A+ 2z —qglagws4
z=p+1

(2.3)
We know that |Re(w)| < |w/|, so choosing values of w on real axis.

In (2.3) w — 1 allowing through real axis, it follows that

> z! z+y\"
;BZP;H (z—q)! <p+7> Me-aw—g=1)+9le=g)

0= )1 =N +a(l =X +z—q)las

(pﬁlq)![a(l—)\er—Q)—)\(p—Q)(p—q—l) —6(p—q) + (- 8)(1-N)].

P2l =A4+p—q) = Ap - —q—1) —d(p—q) + (6 — ¢)(1 — \)]

=1
Z wamgl.

r=p+1
Corollary 1 : If the function ((w) is in I'*(p, A, ¢, 9, &) then

a; < ¥(x)

2 (52) D - —a-D)+6w—aq) - - )1 =N +a(l = A+z—q)
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fore=1+p,2+p,---.
Theorem : The function h(w) given by (1.2) is in KT™(p, A, ¢, 6, ) if and only if

o0

2{: ﬁ%%jamf;p-

r=p+1
Proof: Suppose the function h(w) is in KT*(p, A, ¢, §, ). Therefore wf'(w) € T*(p, A, ¢, d, a).
Let g(w) = wh'(w)

g(w) = pwP — Z ra,w”
z=p+1
Thus
Sw(DE" (@, (. plo(w)) + M DE* @ plaw)) _ o o
(1= A(D&(Qp(r, p)g(w))) + w(DE (R (r, p)g(w)))
Consider

Sw (D (Qp(r, p)g(w))) + Aw? (DE2 (2 (r, p)g(w))) — (8 — )
[(1 = M) (D (Qp(r, )g(w))) + w(DE(Qp(r, p)g(w)))]

= PP - )p g 1)+ 9p ) (6 §)(1— A)Jur T
(p—Q)

- Ty x—q)(x—q— x—q)— (6 — — A)]azw* 9.
> g () e o g wote =0 600 W

Now consider
(1 = A(DE(Q(r, p)g(w))) + w(DL (Qp(r, p)g(w)))

plp > xlr :B—i—’y)r _
= 1- A a3 1— A+ — glagw™ .
(p—q)! ! tr-dv oS (@ —a)! <p+7 | o dlagw

From (2.5) we have

G = )P == 1)+ é(p—q) = (5 — $)(1 = \)JuwP -

¥ 2 (22) e — 0@ — g - 1) + 6 — ) — (6= 6)(1 — Nayuwr

r=p+1

plp [
(p—q)!

—A+p—quwr?— Zl(m"’f), (%) [1—X+2z — qlaw*4
T=p+
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We know that |Re(w)| < |w|, allowing w — 1_ through real axis, we get

> zlz z+v\"
xz’p;q (z—q)! <p+7> Me-aw—g=1)+9le=g)

—0 =) 1 =N) +a(l =X+ z—q)las

= (pp_!pq)![a(l “A+tp—q@) = Ap-9P—qg—1)—d(p—q) + (5 —d)(1L = N)].
Therefore we get

We can prove the converse on the line of Theorem 1.
Corollary 2 : If the function h(w) given by (1.2) is in KI™(p, \, ¢, 0, ) then
ap < B\I/(:r)

X

fore=1+p,w+p,- --.

3. Growth, Distortion Theorem
Theorem 3 : If the function h(w) given by (1.2) is in I'*(p, A, ¢, J, @) then

wlP =¥ (p+ w7 < [h(w)] < Jwl’ + ¥ (p+ 1)|w].

Proof : The function h(w) is in T™(p, A, ¢, 6, @) if and only if

[h(w)] < [w?]+ | Y aw®| < Jwl +P(p+ 1)|w| P, (3.1)

Similarly

hw)] > [ | 37 apw”| < fwP - B(p+ D]w|". (3.2)

From (3.1) and (3.2) we have
[wl? = (p + Vw7 < [h(w)] < Jwf? + T(p + 1)|w|P.

Hence the result.
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Theorem 4 : If h(w) is in KT™*(p, A\, ¢, 0, ) then

P (P ) gp+ D) < |h(w)] < P + (2= ) O(p+ 1)]w]HP
= (2 ) W Dol < ) < i+ (2 ) 0o+ Dl

Proof : h(w) given by (1.2) is in KI™*(p, A, ¢, 0, ) then if and only if

o
Z Lam <p.
Ok
r=p+1
- p
)l <ol +| Y | < o+ (S v Dl 63
r=p+1 P
Similarly
o0
)20~ | Y | 2 ol - (S ) el 6
r=p+1 P

From (3.3) and (3.4) we have

P (L) wp )| < < JwP + (2= ) w(p + 1)
= (2 ) 0o+ Dol < ) <+ (2 ) 0+ il

Hence the result.

Theorem 5 : If the function h(w) given by (1.2) is in I (p, A, ¢, , @) then
plwP™ + (p+ )W (p + Dwl? < | (w)] < plwlP™! + (p+ 1)¥(p + Dl

Proof : The function h(w) is in I'*(p, A, ¢, 9, @) therefore

B (w) = pwP~! — Z razw*
r=p+1

oo
B (w)] < [pwP™ [+ | Y zagw™!
r=p+1

|7 (w)| < plwfP~ + (p+ 1) (p + 1)[wl. (3.5)

Similarly
|7 (w)] = plwlP™" — (p+ 1)¥(p+ 1wl (3.6)
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From (3.5) and (3.6) we have
plwlP 4+ (p+ D¥(p+ 1w’ < W (w)| < plwlP~" + (p+ 1)¥(p+ 1) |wP.

Hence the result.
Theorem 6 : If the function h(w) given by (1.2) is in KT™(p, A, ¢, 0, &) then

=l (L ) wip 4 Dl < B (w)] < p‘1+<p>\11 + 1) |wlP.
plu= = (S22 ) W+ Dl < )] < piol 4+ (L2 ) 0+ 1l
Proof : The function h(w) is in KT™*(p, A, ¢, 0, ) therefore
o
Z \IJLG’(IJ <p.
i1 V@)
o0
B (w) = pwP™! — Z razw !
r=p+1
o0
B (w)] < [pwP™ '+ | Y wagw™!
r=p+1
B (w)| < wp_l—l—(p)\ll + 1)|wlP. 3.7
|h (w)] < plwl P (p+ 1wl (3.7)
Similarly
B (w)| > plwP~! — Py + 1) |wlP. 3.8
)l = sl = (27 ) w1l (3.5)
From (3.7) and (3.8) we have
™ (2 ) W+ Dl < W)l < plol? ™+ (2 ) Wi Dl
p+1 - - p+1

Hence the result.

4. Radius of Convexity
Theorem 7 : Let h(w) given by (1.2) is in I'"(p, A\, ¢,d, ). Then h is in (&) in

|lw| < Ry, where
1
L ffp-o)
= f .
R zgﬁp {{ xV(z)

Proof : It is sufficient to show that

h'(w)
-1

wP

p‘gpf for |w| < Rj.
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We have
W (w) - z—p+1 - z—p+1
1 P = |~ Z Tazw < Z x|ag||w] :
r=p+1 z=p+1
Thus
——|ag||w|*PT < 1. (4.1)
z:z,:ﬂ -8
Theorem 1 conforms that -
1
> el <1 (4.2)
r=p+1 \I/(.Z‘)
Hence (4.1) will be true if
T ’ |acfp+1 < 1
=9 ~ U(x)

We obtain

as required.
Theorem 8 : Let the function h(w) given by (1.2) is in I'™*(p, \, ¢, d,«). Then h is in
S*(¢) in |w| < Rg, where

Proof : We must show that

wh!(w)
— < p-—E.
iy e
We have -
N L
1= > lagf|lw[*=?
r=p+1

Hence (4.3) holds true if

S e <1 (a.4)
ot =8
Theorem 1 conforms that
> 1
3 T(;;;)'“w‘ <1. (4.5)
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Hence by using (4.4) and (4.5) will be true if

(x — E) T—p 1
TR L Tr

()

as required.

29

Theorem 9 : Let the function h(w) given by (1.2) is in I'*(p, A, ¢, , «). Then h is in

C(¢) in |W| < Rs3, where

oo ({28 )

Proof : We know that h is convex if and only if wh’ is starlike.

‘We must show that

/
wyg' (w
i<
where g(w) = wf'(w)
(o] (o]
|| e |3 el plat
‘ q _ ’ _ r=p+1 _ S z=p+1 — S p— §
g(w) pwP — > xa,w® p— > x|ag||w[FP
r=p+1 r=p+1
Therefore we have
2 x(z—¢) _
> Wlam\lw\z P<1
L
Theorem 1 conforms that
S|
> ——la.| <1
2, 00)
Hence by using (4.6) and (4.7) will be true if
x(x_§)|w‘z—p < 1
p(p—¢§) ~ ¥(z)

as required.
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5. Closure Theorem
Theorem 10 : Let hj(w) = wP and h,(w) = w" — ¥(z)w” for x > 1 + p. Then
h(w) € T*(p,\, ¢,0,a) if and only if h(w) can be expressed in the form h(w) =

Ahi(w)+ >0 Azhg(w) where \; > 0and A+ > A\, =1
r=p+1 r=p+1
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