International J. of Pure \& Engg. Mathematics (IJPEM)
ISSN 2348-3881, Vol. 4 No. III (December, 2016), pp. 75-80

# ON PRIME AND SEMI PRIME NEAR RINGS WITH DERIVATIONS 

A. R. GOTMARE ${ }^{1}$ AND I. M. JADHAV ${ }^{2}$<br>1.2 Departments of Mathematics,<br>GDM Arts KRN Commerce and MD Science College, Jamner Dist. Jalgaon, Maharashtra, India


#### Abstract

Let $N$ be a semi prime right rings, $A$ a subset of $N$ such that $0 \in A$ and $A N \subseteq A$ and $d$ be a derivation on $N$. The purpose of this paper is to show that if $d$ acts as a homomorphism on $A$ or anti homomorphism on $A$ then $d(A)=0$.


## 1. Introduction

Throughout this paper $N$ will be right near ring. A derivation on $N$ is defined to be an additive endomorphism satisfying the product rule $d(x y)=x d(y)+d(x) y$ for all $x, y \in N$. According to Bell and Mason 1 a near ring $N$ is said to be prime if $x N y=0$ for all $x, y \in N \Rightarrow x=0$ or $y=0$ and $N$ is said to be semi prime if $x N x=0 \Rightarrow x=0$ for all $x \in N$. Let $S$ be a nonempty subset of $N$ and $d$ be a derivation on $N$. If $d(x y)=d(x) d(y)$ or $d(x y)=d(y) d(x)$ for all $x, y \in S$ then, $d$ is said to act as an homomorphism or anti homomorphism on $S$ respetively.

Bell and Kappe 3 proved that if $d$ is derivation of semiprime ring $R$ which is either an endomorphism or anti endomorphism, then $d$ is $=0$. They also showed that if $d$ is derivation of prime ring $R$ which acts as a homomorphism or anti homomorphism on $I$, where $I$ is non zero right ideal, then $d=0$ on $R$.

## 2. Results

The aim of this paper is to prove the above conclusions holds for near rings.
Theorem : Let $N$ be a semi prime right near ring, and $d$ a derivation on $N$. Let $A$ be a subset of $N$ such that $0 \in A$ and $A N \subset A$. If $d$ acts as a homomorphism on $A$ or as an anti homomorphism on $A$ then $d A=0$.

In order to prove theorem we need the following lemmas.
Lemma 1: If $N$ is a right near ring and $d$ is a derivation on $N$, then $\operatorname{cyd}(x) d(y) x=$ $c y d(x)+c d(y) x$ for all $x, y, c \in N$.
Lemma 2: Let $N$ be a right near ring and $d$ a derivation on $N$ and $A$ a multiplicative sub semi group of $N$ which contains 0 . If $d$ acts as an anti homomorphism on $A$ then $a_{0}=0, \quad \forall a \in A$.
Proof: Since $a_{0}=0, \forall a \in A$ and $d$ acts as an anti homomorphism on $A$ then we have $d(a)=0, \quad \forall a \in A a_{0}+d(a) 0=0, \quad$ foralla $\in A$. Thus we get $a_{0}=0, \quad \forall a \in A$.
Lemma 3: Let $N$ be a right near ring and $A$ a multiplicative sub semi group of $N$ then
(i) If $d$ acts as a homomorphism on $A$ then

$$
\begin{equation*}
d(y) x d(y)=y x d(y)=d(y) x y, \quad \forall x, y \in A . \tag{3.1}
\end{equation*}
$$

(ii) If $d$ acts as an anti homomorphism on $A$ then

$$
\begin{equation*}
d(y) x d(y)=d(y) y x=x y d(y), \quad \forall x, y \in A . \tag{3.2}
\end{equation*}
$$

Proof: (i) Let $d$ acts as an homorphism on $A$. Then

$$
\begin{equation*}
d(x y)=x d(y)+d(y)=d(x) d(y), \quad \forall x, y \in A \tag{3.3}
\end{equation*}
$$

Now taking $y x$ instead of $x$ in 3.3 We have

$$
\begin{equation*}
y x d(y)+d(y x) y=d(y x) d(y)=d(y) d(x y) x, y \in A . \tag{3.4}
\end{equation*}
$$

Now by Lemma 1 ,

$$
d(y) d(x y)=d(y) x d(y)+d(y) d(x) y=d(y) x d(y) d(y x) y
$$

Using this relation in (3.4), we obtain $y x d(y)=d(y) x d(y), \forall x, y \in A$. Similarly taking $y x$ instead of $y$ in (3.3), we can prove the relation

$$
d(y) x d(y)=d(y) x y, \quad \forall x, y \in A
$$

(ii) Let $d$ acts as an anti homomorphism on $A$, we have,

$$
\begin{equation*}
d(x y)=x d(y)+d(y)=d(y) d(x), \quad \forall x, y \in A \tag{3.5}
\end{equation*}
$$

Putting $x y$ for $y$ in (3.5), we have

$$
\begin{aligned}
x d(x y)+d(x) x y & =d(x y) d(x) \\
& =x d(y)+d(x) d(x) y d(x) \\
& =x d(x y)+d(x) y d(x), \quad \forall x, y \in A
\end{aligned}
$$

From this relation we have $d(x) x y=d(x) y d(x)=0, \quad \forall x, y \in A$.
Similarly by taking $x y$ instead of $x$ in (3.5), one can prove that,

$$
d(y) x d(x)=x y d(y), \quad \forall x, y \in A
$$

Proof of the Theorem: Case (i). Let $d$ acts an homomorphism on $A$. Then by Lemma 3(i), we have,

$$
\begin{equation*}
d(y) x d(y)=d(y) x y, \quad \forall x, y \in A \tag{3.6}
\end{equation*}
$$

Right multiplying (3.6) by $d(z)$, where $z \in A$ and using the hypothesis $d$ acts as an homomorphism on $A$ together with Lemma 1. We obtain $d(y) x d(y) z=0$, forall, $x, y, z \in$ A. Taking $x r$ instead of $x$, where $r \in N$, we have $d(y) \operatorname{xrd}(y) z=0, \forall x, y, z \in A$ and $r \in N$.
Hence $d(y) x d(y) x=0$ for all $x, y \in A$ and by semiprimeness

$$
\begin{equation*}
d(y) x=0, \quad \forall x, y \in A . \tag{3.7}
\end{equation*}
$$

Substuting $y r$ for $y$ (3.7), where $r \in N$,

$$
\begin{equation*}
\Rightarrow, y d(r) x+d(y) r x=0, \quad \forall x, y \in A, r \in N . \tag{3.8}
\end{equation*}
$$

Now left mulyiply (3.8) by $d(z)$, where $z \in A$, we have

$$
d(z) y d(r) x+d(z) d(y) r x=0
$$

According to the relation (3.7) reduces to $d(z y) r x=0$ for all $x, y, z \in A$ and $r \in N$. By semiprimeness, we get

$$
\begin{equation*}
z d(y)=0=z r d(y) \quad \forall y, z \in A \text { and } r \in N . \tag{3.9}
\end{equation*}
$$

Combining (3.7), (3.9) shows that $d(y z) 0, \quad \forall y, z \in A$.
In particular $d(x r x)=0, \forall x, y \in A, r \in N$ and since $d$ acts as homomorphism on $A$, we have

$$
d(x r) d(x)=0=x d(r) d(x)+d(x) r d(x), \quad \forall x, y \in A, r \in N .
$$

In view of (3.9), this gives us $d(x) N d(x)=0, \quad \forall x, y \in A$.
Case (ii) : Suppose $d$ acts as an antihomomorphism on $A$. Note that $a_{0}=0, \forall a \in A$, by Lemma 2. Now according to Lemma 3(ii),

$$
\begin{align*}
& d(y) x d(y)=x y d(y), \quad \forall x, y \in A .  \tag{3.10}\\
& d(y) x d(y)=d(y) y x, \quad \forall x, y \in A . \tag{3.11}
\end{align*}
$$

Replacing $x$ by $x d(y)$ in (3.10) and using Lemma 1, we have

$$
\begin{equation*}
d(y) x y d(y)+d(y) x d(y) y=x d(y) y d(y), \quad \forall x, y \in A \tag{3.12}
\end{equation*}
$$

Subatituting $x y$ for $x$ in (3.10), we have,

$$
\begin{equation*}
d(y) x y d(y)=x y^{2} d(y), \quad \forall x, y \in A \tag{3.13}
\end{equation*}
$$

Right multiplying (2.10) by $y$, we get

$$
\begin{equation*}
d(y) x d(y) y=x y d(y) y, \quad \forall x, y \in A . \tag{3.14}
\end{equation*}
$$

Replacing $x$ by $y$ in (2.10), we have $d(y) y d(y)=y^{2} d(y)$ and left multiplying this relation by $x$, we get

$$
\begin{equation*}
x d(y) y d(y)=x y^{2} d(y), \quad \forall x, y \in A . \tag{3.15}
\end{equation*}
$$

Using (3.13), (3.14), (3.15) and (3.12), one can easily obtain $x y d(y) y=0 \quad \forall x, y \in$ $A$. Hence $y r y d(y) y=0$ and $y d(y) \operatorname{yr} y d(y) y=y d(y) 0=0, \forall \quad y \in A, r \in N$ and by semiprimeness

$$
\begin{equation*}
y d(y) y=0, \quad \forall y \in A \tag{3.16}
\end{equation*}
$$

According to (3.14), we get $d(y) x d(y) y=0, \quad \forall x, y \in A$. Using this relation in (3.11), we get

$$
\begin{equation*}
d(y) y x y 0, \quad \forall x, y \in A \tag{3.17}
\end{equation*}
$$

Replacing $x$ by $x d(y)$ in (3.17), we have $d(y) y x d(y) y=0=d(y) y r x d(y) y x, \forall x, y \in A$ and $r \in N$. Hence

$$
\begin{equation*}
d(y) y x=0, \quad \forall x, y \in A . \tag{3.18}
\end{equation*}
$$

Using (3.18) and (3.11), one can obtain $d(y) x d(y)=0=d(y) \operatorname{xrd}(y) x, \quad \forall x, y \in A, r \in$ $N$. Hence,

$$
\begin{equation*}
d(y) x=0, \quad \forall x, y \in A \tag{3.19}
\end{equation*}
$$

Therefore

$$
\begin{gathered}
x(z) d(y x) x=0 \\
x d(z)(y d(n)+d(y) n) x=0 \\
x d(z) y d(n) x+x d(z) d(y) n x=0, \quad \forall x, y, z \in A, n \in N .
\end{gathered}
$$

In view of (3.19), this gives $x d(z) d(y) n x=0=x d(z) d(y) n x d(z) d(y)$.
Hence $x d(z) d(y)=0, \quad \forall x, y, z \in A$. Since $d$ acts an an anti homomorphism on $A$, we have $x d(y z)=0, \quad \forall x, y, z \in A$. So that $x y d(z)+x d(y) z=0, \quad \forall x, y, z \in A$. By (3.19) we now get $x y d(z)=0=x d(z) r y d(z)$. By taking $x$ instead of $y$ we get $x d(z)=\forall x, y, z \in A$. Recall (3.19) we have now $d(x y)=0$ and $d(x x r)=0, \forall x, \in A$ and $r \in N$. Thus $d(x r) d(x)=0$. Hence the proof.
We have some consequences of the theorem.
Corollary : Let $N$ is semi prime right near ring and $d$ a derivation of $N$. If $d$ acts as an homomorphism on $N$ or as an anti homomorphism on $N$ then $d=0$.

## References

[1] Bell H. E. and Mason G., On Derivations in Near Rings, near fields, North Holland Mathematics.
[2] Pilz G., Near Rings, North Holland, Amsterdam, New York.
[3] Bell H. E. and Kappe L. G., Rings in which derivations satisfy certain algebraic conditions Acta Maths.

