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Abstract

Let N be a semi prime right rings, A a subset of N such that 0 ∈ A and AN ⊆ A
and d be a derivation on N . The purpose of this paper is to show that if d acts as
a homomorphism on A or anti homomorphism on A then d(A) = 0.

1. Introduction

Throughout this paper N will be right near ring. A derivation on N is defined to be

an additive endomorphism satisfying the product rule d(xy) = xd(y) + d(x)y for all

x, y ∈ N . According to Bell and Mason 1 a near ring N is said to be prime if xNy = 0

for all x, y ∈ N ⇒ x = 0 or y = 0 and N is said to be semi prime if xNx = 0⇒ x = 0

for all x ∈ N . Let S be a nonempty subset of N and d be a derivation on N . If

d(xy) = d(x)d(y) or d(xy) = d(y)d(x) for all x, y ∈ S then, d is said to act as an

homomorphism or anti homomorphism on S respetively.

−−−−−−−−−−−−−−−−−−−−−−−−−−−−

c© http: //www.ascent-journals.com

75



76 A. R. GOTMARE & I. M. JADHAV

Bell and Kappe 3 proved that if d is derivation of semiprime ring R which is either

an endomorphism or anti endomorphism, then d is = 0. They also showed that if d is

derivation of prime ring R which acts as a homomorphism or anti homomorphism on I,

where I is non zero right ideal, then d = 0 on R.

2. Results

The aim of this paper is to prove the above conclusions holds for near rings.

Theorem : Let N be a semi prime right near ring, and d a derivation on N . Let A be

a subset of N such that 0 ∈ A and AN ⊂ A. If d acts as a homomorphism on A or as

an anti homomorphism on A then dA = 0.

In order to prove theorem we need the following lemmas.

Lemma 1 : If N is a right near ring and d is a derivation on N , then cyd(x)d(y)x =

cyd(x) + cd(y)x for all x, y, c ∈ N .

Lemma 2 : Let N be a right near ring and d a derivation on N and A a multiplicative

sub semi group of N which contains 0. If d acts as an anti homomorphism on A then

a0 = 0, ∀ a ∈ A.

Proof : Since a0 = 0, ∀a ∈ A and d acts as an anti homomorphism on A then we have

d(a) = 0, ∀ a ∈ A a0 + d(a)0 = 0, foralla ∈ A. Thus we get a0 = 0, ∀a ∈ A.

Lemma 3 : Let N be a right near ring and A a multiplicative sub semi group of N

then

(i) If d acts as a homomorphism on A then

d(y)xd(y) = yxd(y) = d(y)xy, ∀ x, y ∈ A. (3.1)

(ii) If d acts as an anti homomorphism on A then

d(y)xd(y) = d(y)yx = xyd(y), ∀ x, y ∈ A. (3.2)

Proof : (i) Let d acts as an homomorphism on A. Then

d(xy) = xd(y) + d(y) = d(x)d(y), ∀ x, y ∈ A. (3.3)

Now taking yx instead of x in 3.3 We have

yxd(y) + d(yx)y = d(yx)d(y) = d(y)d(xy) x, y ∈ A. (3.4)
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Now by Lemma 1 ,

d(y)d(xy) = d(y)xd(y) + d(y)d(x)y = d(y)xd(y)d(yx)y.

Using this relation in (3.4), we obtain yxd(y) = d(y)xd(y), ∀ x, y ∈ A. Similarly taking

yx instead of y in (3.3), we can prove the relation

d(y)xd(y) = d(y)xy, ∀ x, y ∈ A.

(ii) Let d acts as an anti homomorphism on A, we have,

d(xy) = xd(y) + d(y) = d(y)d(x), ∀ x, y ∈ A. (3.5)

Putting xy for y in (3.5), we have

xd(xy) + d(x)xy = d(xy)d(x)

= xd(y) + d(x)d(x)yd(x)

= xd(xy) + d(x)yd(x), ∀ x, y ∈ A.

From this relation we have d(x)xy = d(x)yd(x) = 0, ∀ x, y ∈ A.

Similarly by taking xy instead of x in (3.5), one can prove that,

d(y)xd(x) = xyd(y), ∀ x, y ∈ A.

Proof of the Theorem: Case (i). Let d acts an homomorphism on A. Then by

Lemma 3(i), we have,

d(y)xd(y) = d(y)xy, ∀ x, y ∈ A. (3.6)

Right multiplying (3.6) by d(z), where z ∈ A and using the hypothesis d acts as an

homomorphism on A together with Lemma 1. We obtain d(y)xd(y)z = 0, forall, x, y, z ∈
A. Taking xr instead of x, where r ∈ N , we have d(y)xrd(y)z = 0, ∀x, y, z ∈ A and

r ∈ N .

Hence d(y)xd(y)x = 0 for all x, y ∈ A and by semiprimeness

d(y)x = 0, ∀ x, y ∈ A. (3.7)

Substuting yr for y (3.7), where r ∈ N ,

⇒, yd(r)x + d(y)rx = 0, ∀ x, y ∈ A, r ∈ N. (3.8)
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Now left mulyiply (3.8) by d(z), where z ∈ A, we have

d(z)yd(r)x + d(z)d(y)rx = 0.

According to the relation (3.7) reduces to d(zy)rx = 0 for all x, y, z ∈ A and r ∈ N . By

semiprimeness, we get

zd(y) = 0 = zrd(y) ∀ y, z ∈ A and r ∈ N. (3.9)

Combining (3.7), (3.9) shows that d(yz)0, ∀ y, z ∈ A.

In particular d(xrx) = 0, ∀ x, y ∈ A, r ∈ N and since d acts as homomorphism on A,

we have

d(xr)d(x) = 0 = xd(r)d(x) + d(x)rd(x), ∀ x, y ∈ A, r ∈ N.

In view of (3.9), this gives us d(x)Nd(x) = 0, ∀ x, y ∈ A.

Case (ii) : Suppose d acts as an antihomomorphism on A. Note that a0 = 0, ∀ a ∈ A,

by Lemma 2. Now according to Lemma 3(ii),

d(y)xd(y) = xyd(y), ∀ x, y ∈ A. (3.10)

d(y)xd(y) = d(y)yx, ∀ x, y ∈ A. (3.11)

Replacing x by xd(y) in (3.10) and using Lemma 1, we have

d(y)xyd(y) + d(y)xd(y)y = xd(y)yd(y), ∀ x, y ∈ A. (3.12)

Subatituting xy for x in (3.10), we have,

d(y)xyd(y) = xy2d(y), ∀ x, y ∈ A. (3.13)

Right multiplying (2.10) by y, we get

d(y)xd(y)y = xyd(y)y, ∀ x, y ∈ A. (3.14)

Replacing x by y in (2.10), we have d(y)yd(y) = y2d(y) and left multiplying this relation

by x, we get

xd(y)yd(y) = xy2d(y), ∀ x, y ∈ A. (3.15)
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Using (3.13), (3.14), (3.15) and (3.12),one can easily obtain xyd(y)y = 0 ∀ x, y ∈
A. Hence yryd(y)y = 0 and yd(y)yryd(y)y = yd(y)0 = 0,∀ y ∈ A, r ∈ N and by

semiprimeness

yd(y)y = 0, ∀ y ∈ A. (3.16)

According to (3.14), we get d(y)xd(y)y = 0, ∀ x, y ∈ A. Using this relation in (3.11),

we get

d(y)yxy0, ∀ x, y ∈ A. (3.17)

Replacing x by xd(y) in (3.17), we have d(y)yxd(y)y = 0 = d(y)yrxd(y)yx, ∀ x, y ∈ A

and r ∈ N . Hence

d(y)yx = 0, ∀ x, y ∈ A. (3.18)

Using (3.18) and (3.11), one can obtain d(y)xd(y) = 0 = d(y)xrd(y)x, ∀ x, y ∈ A, r ∈
N . Hence ,

d(y)x = 0, ∀ x, y ∈ A. (3.19)

Therefore

x(z)d(yx)x = 0

xd(z)(yd(n) + d(y)n)x = 0

xd(z)yd(n)x + xd(z)d(y)nx = 0, ∀ x, y, z ∈ A, n ∈ N.

In view of (3.19), this gives xd(z)d(y)nx = 0 = xd(z)d(y)nxd(z)d(y).

Hence xd(z)d(y) = 0, ∀ x, y, z ∈ A. Since d acts an an anti homomorphism on A,

we have xd(yz) = 0, ∀ x, y, z ∈ A. So that xyd(z) + xd(y)z = 0, ∀ x, y, z ∈ A.

By (3.19) we now get xyd(z) = 0 = xd(z)ryd(z). By taking x instead of y we get

xd(z) = ∀ x, y, z ∈ A. Recall (3.19) we have now d(xy) = 0 and d(xxr) = 0, ∀ x,∈ A

and r ∈ N . Thus d(xr)d(x) = 0. Hence the proof.

We have some consequences of the theorem.

Corollary : Let N is semi prime right near ring and d a derivation of N . If d acts as

an homomorphism on N or as an anti homomorphism on N then d = 0.
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