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Abstract

In this paper, some fixed point theorems were proved in complete metric spaces
which are the generalization of some existing results in the literature.

1. Introduction

Let T' be a mapping on a complete metric space (X, d). Finding fixed point of 7" has
a contraction mapping in non convex metric spaces is proved by P. V. Subrahmanyam
[4]. There are so many theorems which proved the existence of unique fixed point of T,
such as Banach’s [8], Ciric’s [3], Kannan’s [2], Kirk’s [11] and Meir and Keeler’s [1].

In this paper, the generalization of some fixed point theorems were proved in the frame-

work of metric spaces.
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Definition 1.1 : Let X be a non empty set, a function d : X x X — R is called a

metric on X if it satisfies the following conditions with
i. d(z,y) >0, and d(z,y) = 0if and only if x =y, Vz,y € X,
ii. d(z,y) =d(y,x), Vx,y € X,
iii. d(z,y) <d(z,2) +d(z,y), Vz,y,z € X,

Then (X, d) is called a metric space.
Example 1: Let X =R and d: X x X — R such that

d(z,y) = |z —yl.

Then (X, d) is a metric space.

Definition 1.2 : Let (X, d) be a metric space and {zy}n>0 be a sequence in X. Then
{zn}n>0 converges to x in X whenever for every e > 0 there is a natural number n € N
such that d(z,,z) < € for all n > N. It is denoted by lim,_,~ =, = z or =, — .
Definition 1.3 : Let (X, d) be a metric space and {z, }n>0 be a sequence in X. {xy,}n>0
is a Cauchy sequence whenever for every € > 0 there is a natural number n € N, such
that d(xy,, ) < € for all n,m > N.

Definition 1.4 : Let (X, d) be a metric space, if every Cauchy sequence is convergent

in X, then X is called a complete metric space.

2. Main Result
Theorem 2.1 : Let (X, d) be a complete metric space. Suppose the mapping 7' : X —

X satisfies the following conditions:

d(z, Tx) + d(y, Ty)
d(z,Tz)+d(y, Ty) + k

for all z,y € X, where k£ > 1. Then

AT, Ty) < ( )da.y) &)

(i) T has unique fixed point in X.

(ii) T™a* converges to a fixed point, for all z* € X.
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Proof : (i) Let g € X be arbitrary and choose a sequence {z,} such that z,1=Tz,.

d(xn+la xn) = d(TZUnv Txnfl)

( d(xp, Txy) + d(xp—1,TTp_1)
d(xn, Txy) + d(xp—1,TxHn_1) + k

)d(:rn,:vn_l)

d(xn; xn—&—l) + d(xn—la xn)
< d(Tp, Tp_
- <d(xn,a:n+1) +d(zp—1,2n) + k) (T, Tn1)
Take
5 _ d(xn,$n+1) +d($n—17$n)
" d(IL’n, xn—l—l) + d(xn—lv xn) + k7
we have

d(l’n+1, xn) < ﬁnd(xna l‘nfl)

< (ﬁnﬁnfl)d(xnfla $n72>

< (ﬁnﬁn—l Tt 61)d($17 $0).

Observe that (3,) is non increasing, with positive terms. So, f1...0, < 7 and G} — 0.

It follows that
nli_{glo(ﬁlﬂz <+ fBp) =0.

Thus, it is verified that

lim d(xpy1,2,) =0

n—oo

Now for all m,n € N and m > n we have

d(13m7 xn) < d(l'nv xn+1) + d(anrla $n+2) + -+ d(l'mfl, xm)

< [(BnBr—1-B1) + (Bas1Bn -+ B1) + - + (Bn—1Bm—2 - - B1)]d(21, T0)
m—1

AT, 0) = D (BB -+ B1)d(z1, 20)

k=n
Where, ar, = (BrBk-1- " B1)-
o 00 m—1
Now, klim % <1, > agis finite and > (Bkfr—1---P1) — 0, as m,n — 0.
—© k=1 k=n

Hence {ay} is convergent by D’Alembert’s ratio test.
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Therefore {z,} is a Cauchy sequence. There is * € X such that z, — z* as n — oc.

d(Tz*,2*) < d(Tx*,Txy) + d(Txp, z*)

( d(z*, Tx*) + d(zy, Tzy)
d(z*, Tx*) + d(zp, Txy) + k

( d(z*, Tx*) + d(xn, Tni1)
d(z*, Tx*) + d(Tn, Tni1) + k

d(Tz*,z*) <0 as n— o0

Therefore d(z*,Tz*) = 0. Thus, Tz* = z*.

IN

)d(wn, )+ d(Txy, ™)

IN

)d(n,2%) + d(wns1,27)

Uniqueness

suppose z* and y* are two fixed points of T.
d(z*,y") = d(Ta?* Ty*)
d(z*, Tz*) 4+ d(y*, T'y* . %
(4 WATV) Yate )
0
0

IN

d(z*, Tz*) +d(y ,Ty*) +

IN

(2", y")

= zF=y"

Hence z* is an unique fixed point of T.

(ii) d(T"x*, z*) = d(T" Y (Tz*), z*) = d(T" 'a*, 2*) = d(T"2(Tx*),2*) --- = d(Tz*,2*) =
0
Hence T"x* converges to a fixed point, for all z* € X. O

Corollary 2.2 : Let (X, d) be a complete metric space. Suppose the mapping T': X —

X satisfies the following conditions:

d(z, Tx) + d(y, Ty)
r,Tx) +d(y, Ty) +1

AT y) < (7 Jd(a.v) )

for all z,y € X. Then
(i) T has unique fixed point in X.
(ii) T™x* converges to a fixed point, for all z* € X.

Proof : The proof of the corollary immediate by taking k = 1 in the above theorem. O
Theorem 2.3 : Let (X, d) be a complete metric space and let T' be a mapping from X
into itself. Suppose that T satisfies the following condition:
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d(y,Ty)
d(z,Tx) +d(y, Ty) + k

for all x,y € X, where k > 1. Then

d(Ta,Ty) < ( )d(a.y) (3)

(i) T has unique fixed point in X.
(ii) T™a* converges to a fixed point, for all z* € X.

Proof : (i) Let 29 € X be arbitrary and choose a sequence {z,} such that x,1=Tz,.
We have

d(xn—l-la wn) = d(TJ}n, Txn—l)

< (it Y, a)
= (d(:cn,xn:fgx:dl(’a:in)hxn) +k>d(xn,xn_1)
- (d(xn’ xn:fgx:dl(’a:ii)l, T,) + k;>d(xn= Tn-1)-
Take N e
! d(xp, Tpy1) + d(Tp_1,2n) + K’
we have

d(xn+1a xn) < ﬁnd(xna wn—l)

< (ﬁnﬁn—l)d(xn—la wn—Q)

d(il?n+1, l‘n) < (ﬁnﬁn—l e ﬁl)d($1> xO)'

Observe that ((3,) is non increasing, with positive terms.
So, B1...0n, < BT and B — 0. It follows that

nh_{glo(ﬁlﬁz o By) = 0.

Thus, it is verified that

lim d(xpt1,2,) = 0.
n—oo
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Now for all m,n € N and m > n we have

d(13m7 xn) < d(l'nv xn+1) + d(anrla $n+2) + -+ d(l'mfl, xm)

[( nﬁn 17 B1) + (Bp1Bn- - 1) + -+ + (Bm—18m—2 - - - B1)]d(21, T0)

IA

(T, ) Zﬂkﬂ“ B)d(1, o)

where, ax = (BxBk—1- - 51).
. g1 00 . ) m—1
Now, khj{.low <1, > ayis finite and > (BkBr—1---F1) — 0, as m,n — oo.

k=1 k=n
Hence {ay} is convergent by D’Alembert’s ratio test.

Therefore {z,} is a Cauchy sequence. There is * € X such that z, — z* as n — oc.

d(Tz*,2%) < d(Tx*, Tan) + d(Tzn, 2")
( d(mexn)
d(z*, Tz*) + d(zn, Tzn) +
d(xThmn—f—l) " .
(T Ty ) ) dlansn )
d(Tl'*,:L'*) <0 as n— o

IN

k)d(xn, )+ d(Txy, z*)

IN

Therefore d(z*,Tz*) = 0. Thus, Tz* = z*.
Uniqueness

suppose x* and y* are two fixed points of 7.

d
d(y*, Ty") .
< d
- <d(1:*,Tx*)+d(y*,Ty*)+l) (=" 9")
0
0

Hence z* is an unique fixed point of 7.

(ii) d(T"x*, z*) = d(T" Y (Tz*), z*) = d(T" 'a*, 2*) = d(T"2(Tx*),2*) --- = d(Tz*,2*) =
0
Hence T"x* converges to a fixed point, for all z* € X. a

Corollary 2.4 : Let (X,d) be a complete metric space and let 7' be a mapping from
X into itself. Suppose that T satisfies the following condition:
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d(y, Ty)
d(z,Tx) + d(y, Ty) + 1

d(Te,Ty) < ( Jd(a.v) (1)

for all z,y € X. Then
(i) T has unique fixed point in X.

(ii) T™x* converges to a fixed point, for all z* € X.

Proof : The proof of the corollary immediate by taking k = 1 in the above theorem. O

Theorem 2.5 : Let (X, d) be a complete metric space. Suppose the mapping T': X —

X satisfies the following conditions:

d(z, Ty) + d(y, T'z)
d(xz,Tz)+d(y, Ty) + k

ATz, Ty) < ( )(d(, Ta) + d(y, Ty)) (5)

for all z,y € X, where £k > 1. Then
(i) T has unique fixed point in X.
(ii) T™z* converges to a fixed point, for all * € X.

Proof : (i) Let zp € X be arbitrary and choose a sequence {z,} such that x,,11=T1,.

d(l‘n, T-Tnfl) + d(xnfla Txn)
d(xp, Tzy) + d(xp—1,Txn_1) + k

d
(
( d(xp, xn) + d(Tp—1, Tni1) )(d(wn,$n+1) +d(zp,Tn-1))
(
(

)(d(mn, Txy) + d(zp—1,T2n_1))

d(xp, Tpt1) + d(xp—1,2) + k
d(LEn,l, .’En+1)
d(xp, Tpt1) + d(xp—1,2) + k
d(xp—1,2n) + d(Tpn, Tni1)
d(xp, Tp1) + d(xp—1,2) + k

Wd(@n, Tt1) + d(Tn, Tn—1))

) (@@n; 1) + d(wn, 70-1)

d(xn—l’ xn) + d(ﬂ?n, J:n—&-l)

bn = d(ﬂ?n, xn+1) + d(xn—laxn) +k’
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we have
d(Tny1,Tn) < Bold(Tn, Tng1) + d(@n, Tn-1))
(1 - ﬁn)d(anrla wn) < ﬁnd(xna $n71)
d($n+1a mn) < ﬂfnﬁn)d(xny xnfl)
ﬁnﬂn—l
< (1 — ﬂn)(l — 5n_1)d($n—l7xn—2)
BnBn—1--- 1
S A= B0 — ) (1= ) o070
d(Tn11,2n) < Yd(T1,T0)
where

. Bubns
T (=B = Bar) - (1= Br)

Observe that (3,) is non increasing, with positive terms. So, f1...0, < 7 and G — 0.

It follows that

nlijgo(ﬁl& - fp) =0.

Therefore
lim v, =0
n—oo

Thus, it is verified that

lim d(xpy1,2,) =0

n—oo

Now for all m,n € N and m > n we have
d(xmn $n) < d(ﬂ?n, xn-{—l) + d(l‘n—‘rlu xn-{—?) +--+ d(mm—la l'm)

< [’Yn + Y1+ F ’mel]d(xla .’Eo)

m—1

d(l‘m,l‘n) < Z ’ka(l'l,.%'(])
k=n

Where ap, = .
00 m—1
Now, lim a(’;—:l <1, > a is finite and Y , — 0, as m,n — oo.
k—o0 k=1 k=n
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Hence {74} is convergent, by D’Alembert’s ratio test.

Therefore {z,} is a Cauchy sequence. There is * € X such that =, — z* as n — oc.

d(Tx*,z%) < d(T:L" JTay) +d(Txy, ™)
d(z*, Txy) + d(xy, Tx*)
( d(x*, Txy) + d(xn, T2*) + k
d(z*, xpt1) + d(zy, Tx)
( d(x*, Tpt1) + d(xn, Tx*) + k
d(Tz*,z*) <0 as n — oo.
Therefore d(z*,Tz*) = 0. Thus, Tz* = z*

Uniqueness

IN

)d(xn, ) + d(Txy, x*)

IN

)d(xn, ) + d(zpt1,2¥)

suppose x* and y* are two fixed points of 7.

)(d(a*, Ta*) + d(y*, Ty")

d

( d(z*, Ty*) + d(y*, Tx*)
d(z*, Tx*) +d(y*, Ty*) + k

0

0

Hence z* is an unique fixed point of 7.
(ii) d(T"x*, z*) = d(T" Y (Tz*),z*) = d(T" 'o*, 2*) = d(T"2(Tx*),2*) --- = d(Tz*,2*) =
0

Hence T"x* converges to a fixed point, for all z* € X.

Corollary 2.6 : Let (X, d) be a complete metric space. Suppose the mapping T': X —

X satisfies the following conditions:

d(z,Ty) + d(y, Tz)
x,Tx)+d(y, Ty) + 1

AT Ty) < (5 )(d(e, Ta) + d(y, Ty)) (6)

for all z,y € X. Then
(i) T has unique fixed point in X.
(ii) T™x* converges to a fixed point, for all z* € X.

Proof : The proof of the corollary immediate by taking & = 1 in the above theorem. O
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