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Abstract
In this paper, some fixed point theorems were proved in complete metric spaces
which are the generalization of some existing results in the literature.

1. Introduction

Let T be a mapping on a complete metric space (X, d). Finding fixed point of T has

a contraction mapping in non convex metric spaces is proved by P. V. Subrahmanyam

[4]. There are so many theorems which proved the existence of unique fixed point of T,

such as Banach’s [8], Ciric’s [3], Kannan’s [2], Kirk’s [11] and Meir and Keeler’s [1].

In this paper, the generalization of some fixed point theorems were proved in the frame-

work of metric spaces.
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Definition 1.1 : Let X be a non empty set, a function d : X × X → R is called a

metric on X if it satisfies the following conditions with

i. d(x, y) ≥ 0, and d(x, y) = 0 if and only if x = y, ∀x, y ∈ X,

ii. d(x, y) = d(y, x), ∀x, y ∈ X,

iii. d(x, y) ≤ d(x, z) + d(z, y), ∀x, y, z ∈ X,

Then (X, d) is called a metric space.

Example 1 : Let X = R and d : X ×X → R such that

d(x, y) = |x− y|.

Then (X, d) is a metric space.

Definition 1.2 : Let (X, d) be a metric space and {xn}n≥0 be a sequence in X. Then

{xn}n≥0 converges to x in X whenever for every ε > 0 there is a natural number n ∈ N
such that d(xn, x) < ε for all n ≥ N . It is denoted by limn→∞ xn = x or xn → x.

Definition 1.3 : Let (X, d) be a metric space and {xn}n≥0 be a sequence in X. {xn}n≥0

is a Cauchy sequence whenever for every ε > 0 there is a natural number n ∈ N, such

that d(xn, xm) < ε for all n,m ≥ N.

Definition 1.4 : Let (X, d) be a metric space, if every Cauchy sequence is convergent

in X, then X is called a complete metric space.

2. Main Result

Theorem 2.1 : Let (X, d) be a complete metric space. Suppose the mapping T : X →
X satisfies the following conditions:

d(Tx, Ty) ≤
( d(x, Tx) + d(y, Ty)
d(x, Tx) + d(y, Ty) + k

)
d(x, y) (1)

for all x, y ∈ X, where k ≥ 1. Then

(i) T has unique fixed point in X.

(ii) Tnx∗ converges to a fixed point, for all x∗ ∈ X.
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Proof : (i) Let x0 ∈ X be arbitrary and choose a sequence {xn} such that xn+1=Txn.

d(xn+1, xn) = d(Txn, Txn−1)

≤
( d(xn, Txn) + d(xn−1, Txn−1)
d(xn, Txn) + d(xn−1, Txn−1) + k

)
d(xn, xn−1)

≤
( d(xn, xn+1) + d(xn−1, xn)
d(xn, xn+1) + d(xn−1, xn) + k

)
d(xn, xn−1)

Take

βn =
d(xn, xn+1) + d(xn−1, xn)

d(xn, xn+1) + d(xn−1, xn) + k
,

we have

d(xn+1, xn) ≤ βnd(xn, xn−1)

≤ (βnβn−1)d(xn−1, xn−2)
...

≤ (βnβn−1 · · ·β1)d(x1, x0).

Observe that (βn) is non increasing, with positive terms. So, β1...βn ≤ βn
1 and βn

1 → 0.

It follows that

lim
n→∞

(β1β2 · · ·βn) = 0.

Thus, it is verified that

lim
n→∞

d(xn+1, xn) = 0

Now for all m,n ∈ N and m > n we have

d(xm, xn) ≤ d(xn, xn+1) + d(xn+1, xn+2) + · · ·+ d(xm−1, xm)

≤ [(βnβn−1 · · ·β1) + (βn+1βn · · ·β1) + · · ·+ (βm−1βm−2 · · ·β1)]d(x1, x0)

d(xm, xn) =
m−1∑
k=n

(βkβk−1 · · ·β1)d(x1, x0)

Where, ak = (βkβk−1 · · ·β1).

Now, lim
k→∞

ak+1

ak
< 1 ,

∞∑
k=1

ak is finite and
m−1∑
k=n

(βkβk−1 · · ·β1)→ 0, as m,n→∞.

Hence {ak} is convergent by D’Alembert’s ratio test.
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Therefore {xn} is a Cauchy sequence. There is x∗ ∈ X such that xn → x∗ as n→∞.

d(Tx∗, x∗) ≤ d(Tx∗, Txn) + d(Txn, x
∗)

≤
( d(x∗, Tx∗) + d(xn, Txn)
d(x∗, Tx∗) + d(xn, Txn) + k

)
d(xn, x

∗) + d(Txn, x
∗)

≤
( d(x∗, Tx∗) + d(xn, xn+1)
d(x∗, Tx∗) + d(xn, xn+1) + k

)
d(xn, x

∗) + d(xn+1, x
∗)

d(Tx∗, x∗) ≤ 0 as n→∞

Therefore d(x∗, Tx∗) = 0. Thus, Tx∗ = x∗.

Uniqueness

suppose x∗ and y∗ are two fixed points of T .

d(x∗, y∗) = d(Tx∗, Ty∗)

≤
( d(x∗, Tx∗) + d(y∗, T y∗)
d(x∗, Tx∗) + d(y∗, T y∗) + k

)
d(x∗, y∗)

≤ 0

d(x∗, y∗) = 0

⇒ x∗ = y∗

Hence x∗ is an unique fixed point of T.

(ii) d(Tnx∗, x∗) = d(Tn−1(Tx∗), x∗) = d(Tn−1x∗, x∗) = d(Tn−2(Tx∗), x∗) · · · = d(Tx∗, x∗) =

0

Hence Tnx∗ converges to a fixed point, for all x∗ ∈ X. 2

Corollary 2.2 : Let (X, d) be a complete metric space. Suppose the mapping T : X →
X satisfies the following conditions:

d(Tx, Ty) ≤
( d(x, Tx) + d(y, Ty)
d(x, Tx) + d(y, Ty) + 1

)
d(x, y) (2)

for all x, y ∈ X. Then

(i) T has unique fixed point in X.

(ii) Tnx∗ converges to a fixed point, for all x∗ ∈ X.

Proof : The proof of the corollary immediate by taking k = 1 in the above theorem. 2

Theorem 2.3 : Let (X, d) be a complete metric space and let T be a mapping from X

into itself. Suppose that T satisfies the following condition:
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d(Tx, Ty) ≤
( d(y, Ty)
d(x, Tx) + d(y, Ty) + k

)
d(x, y) (3)

for all x, y ∈ X, where k ≥ 1. Then

(i) T has unique fixed point in X.

(ii) Tnx∗ converges to a fixed point, for all x∗ ∈ X.

Proof : (i) Let x0 ∈ X be arbitrary and choose a sequence {xn} such that xn+1=Txn.

We have

d(xn+1, xn) = d(Txn, Txn−1)

≤
( d(xn−1, Txn−1)
d(xn, xn+1) + d(xn−1, xn) + k

)
d(xn, xn−1)

≤
( d(xn−1, xn)
d(xn, xn+1) + d(xn−1, xn) + k

)
d(xn, xn−1)

≤
( d(xn−1, xn)
d(xn, xn+1) + d(xn−1, xn) + k

)
d(xn, xn−1).

Take

βn =
d(xn−1, xn)

d(xn, xn+1) + d(xn−1, xn) + k
,

we have

d(xn+1, xn) ≤ βnd(xn, xn−1)

≤ (βnβn−1)d(xn−1, xn−2)
...

d(xn+1, xn) ≤ (βnβn−1 · · ·β1)d(x1, x0).

Observe that (βn) is non increasing, with positive terms.

So, β1...βn ≤ βn
1 and βn

1 → 0. It follows that

lim
n→∞

(β1β2 · · ·βn) = 0.

Thus, it is verified that

lim
n→∞

d(xn+1, xn) = 0.
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Now for all m,n ∈ N and m > n we have

d(xm, xn) ≤ d(xn, xn+1) + d(xn+1, xn+2) + · · ·+ d(xm−1, xm)

≤ [(βnβn−1 · · ·β1) + (βn+1βn · · ·β1) + · · ·+ (βm−1βm−2 · · ·β1)]d(x1, x0)

d(xm, xn) =
m−1∑
k=n

(βkβk−1 · · ·β1)d(x1, x0)

where, ak = (βkβk−1 · · ·β1).

Now, lim
k→∞

ak+1

ak
< 1 ,

∞∑
k=1

ak is finite and
m−1∑
k=n

(βkβk−1 · · ·β1)→ 0, as m,n→∞.

Hence {ak} is convergent by D’Alembert’s ratio test.

Therefore {xn} is a Cauchy sequence. There is x∗ ∈ X such that xn → x∗ as n→∞.

d(Tx∗, x∗) ≤ d(Tx∗, Txn) + d(Txn, x
∗)

≤
( d(xn, Txn)
d(x∗, Tx∗) + d(xn, Txn) + k

)
d(xn, x

∗) + d(Txn, x
∗)

≤
( d(xn, xn+1)
d(x∗, Tx∗) + d(xn, xn+1) + k

)
d(xn, x

∗) + d(xn+1, x
∗)

d(Tx∗, x∗) ≤ 0 as n→∞

Therefore d(x∗, Tx∗) = 0. Thus, Tx∗ = x∗.

Uniqueness

suppose x∗ and y∗ are two fixed points of T.

d(x∗, y∗) = d(Tx∗, T y∗)

≤
( d(y∗, Ty∗)
d(x∗, Tx∗) + d(y∗, T y∗) + l

)
d(x∗, y∗)

≤ 0

d(x∗, y∗) = 0

⇒ x∗ = y∗

Hence x∗ is an unique fixed point of T.

(ii) d(Tnx∗, x∗) = d(Tn−1(Tx∗), x∗) = d(Tn−1x∗, x∗) = d(Tn−2(Tx∗), x∗) · · · = d(Tx∗, x∗) =

0

Hence Tnx∗ converges to a fixed point, for all x∗ ∈ X. 2

Corollary 2.4 : Let (X, d) be a complete metric space and let T be a mapping from

X into itself. Suppose that T satisfies the following condition:
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d(Tx, Ty) ≤
( d(y, Ty)
d(x, Tx) + d(y, Ty) + 1

)
d(x, y) (4)

for all x, y ∈ X. Then

(i) T has unique fixed point in X.

(ii) Tnx∗ converges to a fixed point, for all x∗ ∈ X.

Proof : The proof of the corollary immediate by taking k = 1 in the above theorem. 2

Theorem 2.5 : Let (X, d) be a complete metric space. Suppose the mapping T : X →
X satisfies the following conditions:

d(Tx, Ty) ≤
( d(x, Ty) + d(y, Tx)
d(x, Tx) + d(y, Ty) + k

)
(d(x, Tx) + d(y, Ty)) (5)

for all x, y ∈ X, where k ≥ 1. Then

(i) T has unique fixed point in X.

(ii) Tnx∗ converges to a fixed point, for all x∗ ∈ X.

Proof : (i) Let x0 ∈ X be arbitrary and choose a sequence {xn} such that xn+1=Txn.

d(xn, xn+1) = d(Txn, Txn−1)

≤
( d(xn, Txn−1) + d(xn−1, Txn)
d(xn, Txn) + d(xn−1, Txn−1) + k

)
(d(xn, Txn) + d(xn−1, Txn−1))

≤
( d(xn, xn) + d(xn−1, xn+1)
d(xn, xn+1) + d(xn−1, xn) + k

)
(d(xn, xn+1) + d(xn, xn−1))

≤
( d(xn−1, xn+1)
d(xn, xn+1) + d(xn−1, xn) + k

)(d(xn, xn+1) + d(xn, xn−1))

d(xn, xn+1) ≤
( d(xn−1, xn) + d(xn, xn+1)
d(xn, xn+1) + d(xn−1, xn) + k

)
(d(xn, xn+1) + d(xn, xn−1))

Take

βn =
d(xn−1, xn) + d(xn, xn+1)

d(xn, xn+1) + d(xn−1, xn) + k
,



88 R. KRISHNAKUMAR & T. MANI

we have

d(xn+1, xn) ≤ βn(d(xn, xn+1) + d(xn, xn−1))

(1− βn)d(xn+1, xn) ≤ βnd(xn, xn−1)

d(xn+1, xn) ≤ βn

(1− βn)
d(xn, xn−1)

≤ βnβn−1

(1− βn)(1− βn−1)
d(xn−1, xn−2)

...

≤ βnβn−1 · · ·β1

(1− βn)(1− βn−1) · · · (1− β1)
d(x1, x0).

d(xn+1, xn) ≤ γnd(x1, x0)

where

γn =
βnβn−1 · · ·β1

(1− βn)(1− βn−1) · · · (1− β1)

Observe that (βn) is non increasing, with positive terms. So, β1...βn ≤ βn
1 and βn

1 → 0.

It follows that

lim
n→∞

(β1β2 · · ·βn) = 0.

Therefore

lim
n→∞

γn = 0

Thus, it is verified that

lim
n→∞

d(xn+1, xn) = 0

Now for all m,n ∈ N and m > n we have

d(xm, xn) ≤ d(xn, xn+1) + d(xn+1, xn+2) + · · ·+ d(xm−1, xm)

≤ [γn + γn+1 + · · ·+ γm−1]d(x1, x0)

d(xm, xn) ≤
m−1∑
k=n

γkd(x1, x0)

Where ak = γk.

Now, lim
k→∞

ak+1

ak
< 1,

∞∑
k=1

ak is finite and
m−1∑
k=n

γk → 0, as m,n→∞.
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Hence {γk} is convergent, by D’Alembert’s ratio test.

Therefore {xn} is a Cauchy sequence. There is x∗ ∈ X such that xn → x∗ as n→∞.

d(Tx∗, x∗) ≤ d(Tx∗, Txn) + d(Txn, x
∗)

≤
( d(x∗, Txn) + d(xn, Tx

∗)
d(x∗, Txn) + d(xn, Tx∗) + k

)
d(xn, x

∗) + d(Txn, x
∗)

≤
( d(x∗, xn+1) + d(xn, Tx

∗)
d(x∗, xn+1) + d(xn, Tx∗) + k

)
d(xn, x

∗) + d(xn+1, x
∗)

d(Tx∗, x∗) ≤ 0 as n→∞.

Therefore d(x∗, Tx∗) = 0. Thus, Tx∗ = x∗.

Uniqueness

suppose x∗ and y∗ are two fixed points of T.

d(x∗, y∗) = d(Tx∗, T y∗)

≤
( d(x∗, T y∗) + d(y∗, Tx∗)
d(x∗, Tx∗) + d(y∗, Ty∗) + k

)
(d(x∗, Tx∗) + d(y∗, T y∗))

≤ 0

d(x∗, y∗) = 0

⇒ x∗ = y∗

Hence x∗ is an unique fixed point of T.

(ii) d(Tnx∗, x∗) = d(Tn−1(Tx∗), x∗) = d(Tn−1x∗, x∗) = d(Tn−2(Tx∗), x∗) · · · = d(Tx∗, x∗) =

0

Hence Tnx∗ converges to a fixed point, for all x∗ ∈ X.
Corollary 2.6 : Let (X, d) be a complete metric space. Suppose the mapping T : X →
X satisfies the following conditions:

d(Tx, Ty) ≤
( d(x, Ty) + d(y, Tx)
d(x, Tx) + d(y, Ty) + 1

)
(d(x, Tx) + d(y, Ty)) (6)

for all x, y ∈ X. Then

(i) T has unique fixed point in X.

(ii) Tnx∗ converges to a fixed point, for all x∗ ∈ X.

Proof : The proof of the corollary immediate by taking k = 1 in the above theorem. 2
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