International J. of Pure & Engg. Mathematics (IJPEM) ISSN 2348-3881, Vol. 4 No. III (December, 2016), pp. 81-90

SOME FIXED POINT THEOREMS IN COMPLETE METRIC SPACE

R. KRISHNAKUMAR¹ AND T. MANI²

¹ Department of Mathematics,
 Urumu Dhanalakshmi College, Kattur, Tiruchirappalli-620019, India
 ² Department of Mathematics,
 Trichy Engineering College, Konalai, Tiruchirappalli-621132, India

Abstract

In this paper, some fixed point theorems were proved in complete metric spaces which are the generalization of some existing results in the literature.

1. Introduction

Let T be a mapping on a complete metric space (X, d). Finding fixed point of T has a contraction mapping in non convex metric spaces is proved by P. V. Subrahmanyam [4]. There are so many theorems which proved the existence of unique fixed point of T, such as Banach's [8], Ciric's [3], Kannan's [2], Kirk's [11] and Meir and Keeler's [1]. In this paper, the generalization of some fixed point theorems were proved in the framework of metric spaces.

Key Words : Metric space, Complete metric space, Contraction mapping, Fixed point, Unique fixed point.

2000 AMS Subject Classification : Primary 54H25; Secondary 47H09, 47H10.

© http://www.ascent-journals.com

Definition 1.1: Let X be a non empty set, a function $d : X \times X \to R$ is called a metric on X if it satisfies the following conditions with

- i. $d(x, y) \ge 0$, and d(x, y) = 0 if and only if $x = y, \forall x, y \in X$,
- ii. $d(x,y) = d(y,x), \ \forall x, y \in X,$
- iii. $d(x,y) \le d(x,z) + d(z,y), \forall x, y, z \in X,$

Then (X, d) is called a metric space.

Example 1 : Let $X = \mathbb{R}$ and $d : X \times X \to R$ such that

$$d(x,y) = |x-y|.$$

Then (X, d) is a metric space.

Definition 1.2: Let (X, d) be a metric space and $\{x_n\}_{n\geq 0}$ be a sequence in X. Then $\{x_n\}_{n\geq 0}$ converges to x in X whenever for every $\epsilon > 0$ there is a natural number $n \in N$ such that $d(x_n, x) < \epsilon$ for all $n \geq N$. It is denoted by $\lim_{n\to\infty} x_n = x$ or $x_n \to x$.

Definition 1.3: Let (X, d) be a metric space and $\{x_n\}_{n\geq 0}$ be a sequence in X. $\{x_n\}_{n\geq 0}$ is a Cauchy sequence whenever for every $\epsilon > 0$ there is a natural number $n \in \mathbb{N}$, such that $d(x_n, x_m) < \epsilon$ for all $n, m \geq N$.

Definition 1.4 : Let (X, d) be a metric space, if every Cauchy sequence is convergent in X, then X is called a complete metric space.

2. Main Result

Theorem 2.1 : Let (X, d) be a complete metric space. Suppose the mapping $T : X \to X$ satisfies the following conditions:

$$d(Tx,Ty) \le \left(\frac{d(x,Tx) + d(y,Ty)}{d(x,Tx) + d(y,Ty) + k}\right) d(x,y) \tag{1}$$

for all $x, y \in X$, where $k \ge 1$. Then

- (i) T has unique fixed point in X.
- (ii) $T^n x^*$ converges to a fixed point, for all $x^* \in X$.

Proof: (i) Let $x_0 \in X$ be arbitrary and choose a sequence $\{x_n\}$ such that $x_{n+1}=Tx_n$.

$$d(x_{n+1}, x_n) = d(Tx_n, Tx_{n-1})$$

$$\leq \left(\frac{d(x_n, Tx_n) + d(x_{n-1}, Tx_{n-1})}{d(x_n, Tx_n) + d(x_{n-1}, Tx_{n-1}) + k}\right) d(x_n, x_{n-1})$$

$$\leq \left(\frac{d(x_n, x_{n+1}) + d(x_{n-1}, x_n)}{d(x_n, x_{n+1}) + d(x_{n-1}, x_n) + k}\right) d(x_n, x_{n-1})$$

Take

$$\beta_n = \frac{d(x_n, x_{n+1}) + d(x_{n-1}, x_n)}{d(x_n, x_{n+1}) + d(x_{n-1}, x_n) + k}$$

we have

$$d(x_{n+1}, x_n) \leq \beta_n d(x_n, x_{n-1})$$

$$\leq (\beta_n \beta_{n-1}) d(x_{n-1}, x_{n-2})$$

$$\vdots$$

$$\leq (\beta_n \beta_{n-1} \cdots \beta_1) d(x_1, x_0).$$

Observe that (β_n) is non increasing, with positive terms. So, $\beta_1 \dots \beta_n \leq \beta_1^n$ and $\beta_1^n \to 0$. It follows that

$$\lim_{n \to \infty} (\beta_1 \beta_2 \cdots \beta_n) = 0.$$

Thus, it is verified that

$$\lim_{n \to \infty} d(x_{n+1}, x_n) = 0$$

Now for all $m, n \in \mathbb{N}$ and m > n we have

$$d(x_m, x_n) \le d(x_n, x_{n+1}) + d(x_{n+1}, x_{n+2}) + \dots + d(x_{m-1}, x_m)$$

$$\le [(\beta_n \beta_{n-1} \cdots \beta_1) + (\beta_{n+1} \beta_n \cdots \beta_1) + \dots + (\beta_{m-1} \beta_{m-2} \cdots \beta_1)]d(x_1, x_0)$$

$$d(x_m, x_n) = \sum_{k=n}^{m-1} (\beta_k \beta_{k-1} \cdots \beta_1)d(x_1, x_0)$$

Where, $a_k = (\beta_k \beta_{k-1} \cdots \beta_1)$. Now, $\lim_{k \to \infty} \frac{a_{k+1}}{a_k} < 1$, $\sum_{k=1}^{\infty} a_k$ is finite and $\sum_{k=n}^{m-1} (\beta_k \beta_{k-1} \cdots \beta_1) \to 0$, as $m, n \to \infty$. Hence $\{a_k\}$ is convergent by D'Alembert's ratio test.

Therefore $\{x_n\}$ is a Cauchy sequence. There is $x^* \in X$ such that $x_n \to x^*$ as $n \to \infty$.

$$\begin{aligned} d(Tx^*, x^*) &\leq d(Tx^*, Tx_n) + d(Tx_n, x^*) \\ &\leq \Big(\frac{d(x^*, Tx^*) + d(x_n, Tx_n)}{d(x^*, Tx^*) + d(x_n, Tx_n) + k}\Big) d(x_n, x^*) + d(Tx_n, x^*) \\ &\leq \Big(\frac{d(x^*, Tx^*) + d(x_n, x_{n+1})}{d(x^*, Tx^*) + d(x_n, x_{n+1}) + k}\Big) d(x_n, x^*) + d(x_{n+1}, x^*) \\ d(Tx^*, x^*) &\leq 0 \quad \text{as} \quad n \to \infty \end{aligned}$$

Therefore $d(x^*, Tx^*) = 0$. Thus, $Tx^* = x^*$.

Uniqueness

suppose x^* and y^* are two fixed points of T.

$$d(x^*, y^*) = d(Tx^*, Ty^*)$$

$$\leq \left(\frac{d(x^*, Tx^*) + d(y^*, Ty^*)}{d(x^*, Tx^*) + d(y^*, Ty^*) + k}\right) d(x^*, y^*)$$

$$\leq 0$$

$$d(x^*, y^*) = 0$$

$$\Rightarrow x^* = y^*$$

Hence x^* is an unique fixed point of T.

(ii)
$$d(T^n x^*, x^*) = d(T^{n-1}(Tx^*), x^*) = d(T^{n-1}x^*, x^*) = d(T^{n-2}(Tx^*), x^*) \dots = d(Tx^*, x^*) = 0$$

Hence $T^n x^*$ converges to a fixed point, for all $x^* \in X$.

Corollary 2.2: Let (X, d) be a complete metric space. Suppose the mapping $T : X \to X$ satisfies the following conditions:

$$d(Tx, Ty) \le \left(\frac{d(x, Tx) + d(y, Ty)}{d(x, Tx) + d(y, Ty) + 1}\right) d(x, y)$$
(2)

for all $x, y \in X$. Then

- (i) T has unique fixed point in X.
- (ii) $T^n x^*$ converges to a fixed point, for all $x^* \in X$.

Proof: The proof of the corollary immediate by taking k = 1 in the above theorem. \Box **Theorem 2.3**: Let (X, d) be a complete metric space and let T be a mapping from X into itself. Suppose that T satisfies the following condition:

$$d(Tx,Ty) \le \left(\frac{d(y,Ty)}{d(x,Tx) + d(y,Ty) + k}\right) d(x,y) \tag{3}$$

for all $x, y \in X$, where $k \ge 1$. Then

- (i) T has unique fixed point in X.
- (ii) $T^n x^*$ converges to a fixed point, for all $x^* \in X$.

Proof: (i) Let $x_0 \in X$ be arbitrary and choose a sequence $\{x_n\}$ such that $x_{n+1}=Tx_n$. We have

$$d(x_{n+1}, x_n) = d(Tx_n, Tx_{n-1})$$

$$\leq \left(\frac{d(x_{n-1}, Tx_{n-1})}{d(x_n, x_{n+1}) + d(x_{n-1}, x_n) + k}\right) d(x_n, x_{n-1})$$

$$\leq \left(\frac{d(x_{n-1}, x_n)}{d(x_n, x_{n+1}) + d(x_{n-1}, x_n) + k}\right) d(x_n, x_{n-1})$$

$$\leq \left(\frac{d(x_{n-1}, x_n)}{d(x_n, x_{n+1}) + d(x_{n-1}, x_n) + k}\right) d(x_n, x_{n-1}).$$

Take

$$\beta_n = \frac{d(x_{n-1}, x_n)}{d(x_n, x_{n+1}) + d(x_{n-1}, x_n) + k},$$

we have

$$d(x_{n+1}, x_n) \leq \beta_n d(x_n, x_{n-1})$$

$$\leq (\beta_n \beta_{n-1}) d(x_{n-1}, x_{n-2})$$

$$\vdots$$

$$d(x_{n+1}, x_n) \leq (\beta_n \beta_{n-1} \cdots \beta_1) d(x_1, x_0).$$

Observe that (β_n) is non increasing, with positive terms. So, $\beta_1...\beta_n \leq \beta_1^n$ and $\beta_1^n \to 0$. It follows that

$$\lim_{n \to \infty} (\beta_1 \beta_2 \cdots \beta_n) = 0.$$

Thus, it is verified that

$$\lim_{n \to \infty} d(x_{n+1}, x_n) = 0.$$

Now for all $m, n \in \mathbb{N}$ and m > n we have

$$d(x_m, x_n) \le d(x_n, x_{n+1}) + d(x_{n+1}, x_{n+2}) + \dots + d(x_{m-1}, x_m)$$

$$\le [(\beta_n \beta_{n-1} \cdots \beta_1) + (\beta_{n+1} \beta_n \cdots \beta_1) + \dots + (\beta_{m-1} \beta_{m-2} \cdots \beta_1)]d(x_1, x_0)$$

$$d(x_m, x_n) = \sum_{k=n}^{m-1} (\beta_k \beta_{k-1} \cdots \beta_1) d(x_1, x_0)$$

where, $a_k = (\beta_k \beta_{k-1} \cdots \beta_1).$

Now, $\lim_{k\to\infty} \frac{a_{k+1}}{a_k} < 1$, $\sum_{k=1}^{\infty} a_k$ is finite and $\sum_{k=n}^{m-1} (\beta_k \beta_{k-1} \cdots \beta_1) \to 0$, as $m, n \to \infty$. Hence $\{a_k\}$ is convergent by D'Alembert's ratio test.

Therefore $\{x_n\}$ is a Cauchy sequence. There is $x^* \in X$ such that $x_n \to x^*$ as $n \to \infty$.

$$d(Tx^*, x^*) \leq d(Tx^*, Tx_n) + d(Tx_n, x^*)$$

$$\leq \left(\frac{d(x_n, Tx_n)}{d(x^*, Tx^*) + d(x_n, Tx_n) + k}\right) d(x_n, x^*) + d(Tx_n, x^*)$$

$$\leq \left(\frac{d(x_n, x_{n+1})}{d(x^*, Tx^*) + d(x_n, x_{n+1}) + k}\right) d(x_n, x^*) + d(x_{n+1}, x^*)$$

$$d(Tx^*, x^*) \leq 0 \quad \text{as} \quad n \to \infty$$

Therefore $d(x^*, Tx^*) = 0$. Thus, $Tx^* = x^*$.

Uniqueness

suppose x^* and y^* are two fixed points of T.

$$d(x^*, y^*) = d(Tx^*, Ty^*)$$

$$\leq \left(\frac{d(y^*, Ty^*)}{d(x^*, Tx^*) + d(y^*, Ty^*) + l}\right) d(x^*, y^*)$$

$$\leq 0$$

$$d(x^*, y^*) = 0$$

$$\Rightarrow x^* = y^*$$

Hence x^* is an unique fixed point of T.

(ii) $d(T^n x^*, x^*) = d(T^{n-1}(Tx^*), x^*) = d(T^{n-1}x^*, x^*) = d(T^{n-2}(Tx^*), x^*) \dots = d(Tx^*, x^*) = 0$

Hence $T^n x^*$ converges to a fixed point, for all $x^* \in X$.

Corollary 2.4: Let (X, d) be a complete metric space and let T be a mapping from X into itself. Suppose that T satisfies the following condition:

$$d(Tx,Ty) \le \left(\frac{d(y,Ty)}{d(x,Tx) + d(y,Ty) + 1}\right) d(x,y) \tag{4}$$

for all $x, y \in X$. Then

- (i) T has unique fixed point in X.
- (ii) $T^n x^*$ converges to a fixed point, for all $x^* \in X$.

Proof: The proof of the corollary immediate by taking k = 1 in the above theorem. \Box **Theorem 2.5**: Let (X, d) be a complete metric space. Suppose the mapping $T : X \to X$ satisfies the following conditions:

$$d(Tx, Ty) \le \left(\frac{d(x, Ty) + d(y, Tx)}{d(x, Tx) + d(y, Ty) + k}\right) (d(x, Tx) + d(y, Ty))$$
(5)

for all $x, y \in X$, where $k \ge 1$. Then

- (i) T has unique fixed point in X.
- (ii) $T^n x^*$ converges to a fixed point, for all $x^* \in X$.

Proof: (i) Let $x_0 \in X$ be arbitrary and choose a sequence $\{x_n\}$ such that $x_{n+1}=Tx_n$.

$$\begin{aligned} d(x_n, x_{n+1}) &= d(Tx_n, Tx_{n-1}) \\ &\leq \left(\frac{d(x_n, Tx_{n-1}) + d(x_{n-1}, Tx_n)}{d(x_n, Tx_n) + d(x_{n-1}, Tx_{n-1}) + k}\right) (d(x_n, Tx_n) + d(x_{n-1}, Tx_{n-1})) \\ &\leq \left(\frac{d(x_n, x_n) + d(x_{n-1}, x_{n+1})}{d(x_n, x_{n+1}) + d(x_{n-1}, x_n) + k}\right) (d(x_n, x_{n+1}) + d(x_n, x_{n-1})) \\ &\leq \left(\frac{d(x_{n-1}, x_{n+1})}{d(x_n, x_{n+1}) + d(x_{n-1}, x_n) + k}\right) (d(x_n, x_{n+1}) + d(x_n, x_{n-1})) \\ d(x_n, x_{n+1}) &\leq \left(\frac{d(x_{n-1}, x_n) + d(x_n, x_{n+1})}{d(x_n, x_{n+1}) + d(x_{n-1}, x_n) + k}\right) (d(x_n, x_{n+1}) + d(x_n, x_{n-1})) \end{aligned}$$

Take

$$\beta_n = \frac{d(x_{n-1}, x_n) + d(x_n, x_{n+1})}{d(x_n, x_{n+1}) + d(x_{n-1}, x_n) + k},$$

we have

$$d(x_{n+1}, x_n) \leq \beta_n (d(x_n, x_{n+1}) + d(x_n, x_{n-1}))$$

$$(1 - \beta_n) d(x_{n+1}, x_n) \leq \beta_n d(x_n, x_{n-1})$$

$$d(x_{n+1}, x_n) \leq \frac{\beta_n}{(1 - \beta_n)} d(x_n, x_{n-1})$$

$$\leq \frac{\beta_n \beta_{n-1}}{(1 - \beta_n)(1 - \beta_{n-1})} d(x_{n-1}, x_{n-2})$$

$$\vdots$$

$$\leq \frac{\beta_n \beta_{n-1} \cdots \beta_1}{(1 - \beta_n)(1 - \beta_{n-1}) \cdots (1 - \beta_1)} d(x_1, x_0)$$

$$d(x_{n+1}, x_n) \leq \gamma_n d(x_1, x_0)$$

where

$$\gamma_n = \frac{\beta_n \beta_{n-1} \cdots \beta_1}{(1 - \beta_n)(1 - \beta_{n-1}) \cdots (1 - \beta_1)}$$

Observe that (β_n) is non increasing, with positive terms. So, $\beta_1 \dots \beta_n \leq \beta_1^n$ and $\beta_1^n \to 0$. It follows that

$$\lim_{n \to \infty} (\beta_1 \beta_2 \cdots \beta_n) = 0.$$

Therefore

$$\lim_{n \to \infty} \gamma_n = 0$$

Thus, it is verified that

$$\lim_{n \to \infty} d(x_{n+1}, x_n) = 0$$

Now for all $m, n \in \mathbb{N}$ and m > n we have

$$d(x_m, x_n) \le d(x_n, x_{n+1}) + d(x_{n+1}, x_{n+2}) + \dots + d(x_{m-1}, x_m)$$

$$\le [\gamma_n + \gamma_{n+1} + \dots + \gamma_{m-1}]d(x_1, x_0)$$

$$d(x_m, x_n) \le \sum_{k=n}^{m-1} \gamma_k d(x_1, x_0)$$

Where $a_k = \gamma_k$. Now, $\lim_{k \to \infty} \frac{a_{k+1}}{a_k} < 1$, $\sum_{k=1}^{\infty} a_k$ is finite and $\sum_{k=n}^{m-1} \gamma_k \to 0$, as $m, n \to \infty$.

Hence $\{\gamma_k\}$ is convergent, by D'Alembert's ratio test.

Therefore $\{x_n\}$ is a Cauchy sequence. There is $x^* \in X$ such that $x_n \to x^*$ as $n \to \infty$.

$$d(Tx^*, x^*) \le d(Tx^*, Tx_n) + d(Tx_n, x^*)$$

$$\le \left(\frac{d(x^*, Tx_n) + d(x_n, Tx^*)}{d(x^*, Tx_n) + d(x_n, Tx^*) + k}\right) d(x_n, x^*) + d(Tx_n, x^*)$$

$$\le \left(\frac{d(x^*, x_{n+1}) + d(x_n, Tx^*)}{d(x^*, x_{n+1}) + d(x_n, Tx^*) + k}\right) d(x_n, x^*) + d(x_{n+1}, x^*)$$

$$d(Tx^*, x^*) \le 0 \quad \text{as} \quad n \to \infty.$$

Therefore $d(x^*, Tx^*) = 0$. Thus, $Tx^* = x^*$.

Uniqueness

suppose x^* and y^* are two fixed points of T.

$$\begin{aligned} d(x^*, y^*) &= d(Tx^*, Ty^*) \\ &\leq \Big(\frac{d(x^*, Ty^*) + d(y^*, Tx^*)}{d(x^*, Tx^*) + d(y^*, Ty^*) + k} \Big) (d(x^*, Tx^*) + d(y^*, Ty^*)) \\ &\leq 0 \\ d(x^*, y^*) &= 0 \\ &\Rightarrow x^* &= y^* \end{aligned}$$

Hence x^* is an unique fixed point of T.

(ii) $d(T^n x^*, x^*) = d(T^{n-1}(Tx^*), x^*) = d(T^{n-1}x^*, x^*) = d(T^{n-2}(Tx^*), x^*) \dots = d(Tx^*, x^*) = 0$

Hence $T^n x^*$ converges to a fixed point, for all $x^* \in X$.

Corollary 2.6 : Let (X, d) be a complete metric space. Suppose the mapping $T : X \to X$ satisfies the following conditions:

$$d(Tx, Ty) \le \left(\frac{d(x, Ty) + d(y, Tx)}{d(x, Tx) + d(y, Ty) + 1}\right) (d(x, Tx) + d(y, Ty))$$
(6)

for all $x, y \in X$. Then

- (i) T has unique fixed point in X.
- (ii) $T^n x^*$ converges to a fixed point, for all $x^* \in X$.

Proof: The proof of the corollary immediate by taking k = 1 in the above theorem. \Box

References

- Meir A. and Keeler E., A theorem on contraction mappings, Journal of Mathematical Analysis and Applications, 28 (1969), 326-329.
- [2] Caristi J., Fixed point theorems for mappings satiafying inwardness conditions, Transactions of the American Mathematical Society, 215 (1976), 241-251.
- [3] Caristi J. and Kirk W. A., Geometric fixed point theory and inwardness conditions, in The Geometry of Metric and Linear Spaces, 490 (1975), 74-83, of Lecture Notes in Mathematics, Springer, Berlin, Germany.
- [4] Subrahmanyam P. V., Remarks on some fixed point theorems related to Banach's contraction principle, Journal of Mathematical and Physical Sciences, 8 (1974), 445-457.
- [5] Kannan R., Some results on fixed points II, The American Mathematical Monthly, 76(4) (1969), 405-408.
- [6] Krishnakumar R. and Marudai M., Cone convex metric space and fixed point theorems, Int. Journal of Math. Analysis, 6(22) (2012), 1087-1093.
- [7] Krishnakumar R. and Marudai M., Generalization of a fixed point theorem in cone metric spaces, Int. Journal of Math. Analysis, 5(11) (2011), 507-512.
- [8] Banach S., Sur les operations dans les ensembles abstraits et leur application aux equations integrals, Fundamenta Mathematicae, 3 (1922), 133-181.
- [9] Suzuki T., Generalized distance and existence theorems in complete metric spaces, Journal of Mathematical Analysis and Applications, 253(2) (2001), 440-458.
- [10] Suzuki T., A sufficient and necessary condition for the convergence of the sequence of successive approximations to a unique fixed point, Proceedings of the American Mathematical Society, 136(11) (2008), 4089-4093.
- [11] Kirk W. A., Fixed points of asymptotic contractions, Journal of Mathematical Analysis and Applications, 277(2) (2003), 645-650.
- [12] Kirk W. A., Contraction mappings and extensions, in Handbook of Metric Fixed Point Theory, W. A. Kirk and B. Sims, Eds., 1-34, Kluwer Academic, Dordrecht, The Netherlands, (2001).