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Abstract

In this paper we give the generalization of the analogue [1] of the Jacobi-Dunkl
kernel. We have defined Jacobi-Dunkl transform for functions of two variables. We
have also derived some analogy of Miyachi’s theorem for the Jocobi-Dunkl trans-
form for two variables. Inversion formula is also obtained.

1. Introduction

R. Daher [1] has generalized theorems of Hardy and Miyachi for the Fourier transform

on real line to the Jacobi-Dunkl transform. We define the analogue [1] the differential

difference operator on R2 by,

∧α,βf(x1, x2) =
∂

∂x1
f(x1, x2) +

∂

∂x2
f(x1, x2)

[(2α+ 1) coth(x1, x2) + (2β + 1) tanh(x1, x2)
f(x1, x2)− f(−x1,−x2)

2

whereα ≥ β ≥ 2(−1/2); α 6= (1/2).

−−−−−−−−−−−−−−−−−−−−−−−−−−−−
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2. Jacobi-Dunkl Kernel of Two Variables

In this section we define Jacobi-Dunkl kernel of two variables ψ
(α,β)
(λ1,λ2)

is the unique

C∞-solution on R2 of the differential-difference equation given by,

∧α,β(u1, u2) = −iλ1λ2u1u2

u1(0, 0) = u2(0, 0) = 1 for every λ1, λ2 ∈ C.
(1)

It has also the Laplace integral representation R2 for every λ1, λ2 ∈ C and ∀ x1 × x2 ∈
R2 \ (0, 0)

ψ
(α,β)
(λ1,λ2)

(x1, x2) =

∫ |x1×x2|
−|x1×x2|

K(x1, x2, x3, x4)e
−iλ1λ2(x1,x2,x3,x4)dx3dx4 (2)

where K(x1, x2) the positive is function on R2 continuous on (x1, x2) and satisfies

∀ x1 × x2 ∈ R2 \ (0, 0)

∫
R2

K(x1, x2, x3, x4)dx3dx4 = 1. (3)

By (2) and (3) we deduce that the function ψ
(α,β)
(λ1,λ2)

satisfies the following elementary

estimate.

Lemma 1 : Assume that α ≥ β ≥ (−1/2);α 6= (−1/2), λ1, λ2 ∈ C then∣∣∣ψ(α,β)
(λ1,λ2)

∣∣∣ ≤ ψ(α,β)
iIm(λ1,λ2)

(4)

and

∀ x1 × x2 ∈ R2,
∣∣∣ψ(α,β)

(λ1,λ2)

∣∣∣ ≤Me|Im(λ1λ2)||x1x2|. (5)

Proof : Analogue to [1].

3. Jacobi-Dunkl Transform of Two Variables

In this section we define Jacobi-Dunkl transform of two variables. We denote ρ =

α+β+1 where α ≥ β ≥ (−/2); α 6= (−1/2)·D(R2) - the space of all compactly supported

C∞ - functions on R2 the space of all compactly supported C∞ - functions g on R2

which are rapidly decreasing together with their derivatives and Sr(R2) (0 < r ≤ 1),

the generalized Schwartz space[2] defined by S′(R2) = (cosh(x1, x2))
(−2ρ,r)S(R2).

Now we define Jacobi-Dunkl transform of function of two variables f ∈ D(R2) [2] defined

by for every λ1, λ2 ∈ C

Ff(λ1, λ2) =

∫ ∫
R2

f(x1, x2)ψ
(α,β)
(λ1,λ2)

∆α,β(x1, x2)dx1dx2 (6)
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where ∆α,β(x1, x2) = (2 sinh(x1, x2))
2α+1(2 cosh(x1, x2))

2β+1.

4. Inversion of Jacobi-Dunkl Transform of Two Variables

For α ≥ β ≥ (−1/2); α 6= (−1/2),and f ∈ S′(R2) (0 < r ≤ 1), (x1, x2) ∈ R2.

Inversion of Jacobi-Dunkl transform of two variables is given by following formula

f(x1, x2) =

∫
R2

Ff(λ1, λ2)ψ
(α,β)
(−λ1,−λ2)(x1, x2)dσ(λ1, λ2) (7)

where dσ is the measure given by

dσ(λ1, λ2) =
|λ1λ2|

8π(λ21λ
2
2 − ρ2)(1/2)|c(λ21λ22 − ρ2)|2

χR2\(−ρ,ρ)(λ1, λ2dλ1dλ2 (8)

where χR2\(−ρ,ρ)(λ1, λ2) is the characteristic function of R2 \ (−ρ, ρ) and

C(µ) =
2ρ−iµΓ(α+ 1)Γ(iµ)

Γ((1/2)(ρ+ iµ)Γ(1/2)(α− β + 1 + iµ))
, µ ∈ C \ {iN} (9)

is given by [1].

5. The Heat Kernel

Now we define heat kernel E associated with the Jacobi-Dunkl operator for function of

two variables.

Definition 3.1 : Let t > 0. The heat kernel Et associated with the Jacobi-Dunkl

operator for function of two variables is defined by

∀ x1, x2 ∈ R, Et(x1, x2) = F−1(e−tλ
2
1λ

2
2)(x1, x2) (10)

this heat kernel Et has the following properties [1]

(1) for all t > 0, Et is an even positive C∞ - function on R2.

(2) ∀ t > 0, ∀ λ ∈ R2, FEt(λ1, λ2) = e−tλ
2
1λ

2
2 .

6. Version of the Phragmen-Lindeloff Theorem for Two Variables

For the proof of the main results of next section we require the following two lemma on

the two complex variable.
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Lemma 6.1 : Let h be an entire function on C such that

∀ z1, z2 ∈ C, |h(z1, z2)| ≤ Ce−|z1z2|
2

(11)

and

∀ t ∈ R, |h(z1, z2)| ≤ Ceat
2

(12)

for some positive constants a and c. Then h(z1, z2) = const eaz
2
1z

2
2 , z1, z2 ∈ C.

Proof : Analogues to [1] (See ref.1, Lemma 3.1)

As usual, let us define log+(x) = log(x) if x > 1 and log+(x) = 0 otherwise. We also

need the following lemma.

Lemma 6.2 : Suppose g is an entire function and suppose there exists constants

A,B > 0 such that for all

z ∈ C|g(z1, z2)| ≤ AeB(Re(z1)Re(z2))2 (13)

Also suppose ∫ ∞
−∞

log+ |g(z1, z2)| <∞. (14)

Then g is a constant function.

Proof : Analogues to [1] (See ref 1 Lemma 5).

7. Main Results

In this section we state and prove analogues of Hardy’s Miyachi’s theorems for two

variables.

7.1. An analog of Hardy’s theorem for two variables

Theorem 7.1 : Let f be a measurable function on R2 such that

∀ x1, x2 ∈ R |f(x1, x2)| ≤MEa(x1, x2) (15)

and

∀ λ1, λ2 ∈ 1R, |Ff(λ1, λ2)| ≤Me−aλ
2
1λ

2
2 (16)

for some constant a > 0 and M > 0.

Then the function f is a constant multiple of the heat kernel Ea.
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Proof : First since by the condition (15), Ff(λ1, λ2) is well defined for all λ1, λ2 and Ff

is an entire function on C. Moreover using the estimate (4) and (15) for all λ1, λ2 ∈ C
we have

|Ff(λ1, λ2)| ≤
∫
R
|f(x1, x2)||ψα,βλ1,λ2(x1, x2)|∆α,β(x1, x2)dx1dx2

≤ M

∫
R
Ea(x1, x2)ψ

α,β
iIm(λ1λ2)

(x1, x2)∆α,β(x1, x2)dx1dx2

= MF (Ea)(iIm(λ1λ2))

form (10) we have

|Ff(λ1, λ2)| ≤MeaIm(λ1λ2)2 . (17)

Obtain or Im(λ1λ2)
2 ≤ |λ1λ2|2 then we have

|Ff(λ1, λ2)|2 ≤Me−a(λ
2
1λ

2
2) for all λ1, λ2 ∈ C. (18)

We also have by assumption |Ff(λ1, λ2) ≤ Me−a(λ
2
1λ

2
2) for all λ1, λ2 ∈ R so by Lemma

4 we have Ff(λ1, λ2) = const. e−a(λ
2
1λ

2)2) for λ1, λ2 ∈ C.

Using (10) we prove that f(x) = const. f(x1, x2) = Ea(x1, x2).

Hence the theorem.

7.2 An analogue of Miyachi’s theorem for two variables

We denote by

(1) Lpα,β(R2), p ∈ (1,∞) the space of measureable function f on R2 such that

‖f‖1,α,β =

∫
R
|f(x1, x2)||ψα,βλ (x1, x2)|∆α,β(x1, x2)dx1dx2 <∞

and

‖f‖∞,α,β = ess sup
x1,x2∈R

|f(x1, x2)| <∞.

(2) Lp(R2), p ∈ (1,∞) is defined by in the obvious way.

Now our principal result is as follows:

Theorem 7.3 : Let a > 0. Suppose f is a function on R2 such that

E−1a (x1, x2)f(x1, x2) ∈ (L1
α,β + L∞α,β)(R2

x)
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and ∫ +∞

−∞
log+

(∣∣∣∣∣Ff(λ1, λ2)e
eaλ21λ

2
2

ξ

∣∣∣∣∣
)
dλ1dλ2 <∞

for some ξ, 0 < ξ <∞. Then f is a constant multiple of the heat kernel Ea.

Proof : We consider

Ff(λ1, λ2) =

∫ ∫
R2

f(x1, x2)ψ
α,β
λ1,λ2

(x1, x2)∆α,β(x1, x2)dx1dx2 for λ1, λ2 ∈ C.

Using equation (5), we get

|Ff(λ1, λ2)| ≤
∫ ∫

R2

f(x1, x2)ψ
(α,β)
im(λ1,λ2)

(x1x2)∆α,β(x1, x2)dx1dx2.

The integrated of the above integral can be written as follows:

|E−1a (x1, x2)f(x1, x2)|Ea(x1, x2)ψ(α,β)
im(λ1,λ2)

(x1, x2)∆|al,β(x1, x2).

The first factor of which belongs to (L1
α,β+L∞α,β)(Rx1,x2), by assumption and the second

belongs to (L1
α,β ∩ L∞α,β)(Rx1,x2).

Hence, Ff(λ1, λ2) is well defined for all λ1, λ2 ∈ C. Moreover,

|Ff(λ1, λ2)| ≤
∫
R
|E1

a(x1, x2)f(x1, x2)|Ea(x1, x2)ψα,βim(λ1,λ2)
(x1, x2)∆α,β(x1, x2)

≤ C

∫ ∫
R2

Ea(x1, x2)ψ
α,β
iIm(λ)(x1, x2)∆α,β(x1, x2)dx1dx2

≤ CF (Ea)(iIm(λ1λ2))

≤ Cea(I(λ1λ2))
2

with a constant C, independent of λ1, , λ2.

Let g(λ1, λ2) = eλ
2
1λ

2
2Ff(λ1λ2) this is also an entire function.

By equation (18), we have

|g(λ1, λ2)| ≤ Cea(Re(λ1λ2))
2
, for λ1, λ2 ∈ C.

We also have, by assumption,∫ +∞

−∞
log+

(
|g(λ1, λ2)|

ξ

)
dλ1dλ2 <∞.

Hence, applying the crucial Lemma 5 to the function g(λ1, λ2)/ξ we see that g(λ1, λ2) =

constant = K or equivalently

Ff(λ1, λ2) = Ke−aλ
2
1λ

2
2 .



TWO DIMENSIONAL JACOBI-DUNK1 TRANSFORM 7

From (10), by Fourier inversion we get that the function f satisfies

f(x1, x2) = KEa(x1, x2).

Hence theorem is proved.
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