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Abstract

In this paper our aim is to study the generating relation of generalized special
functions and to obtain the rational and polynomial approximation of the above
function. It is also proposed to find the integral transform of the above function
and deduce some properties. It is also proposed to study certain class of gener-
alized polynomials represented by a generalized Rodrigues formula and to derive
their linear generating relations. It may be expanded in terms of generalized heat
Polynomials.

1. Introduction

1.1 Rodrigue’s Formulae and Generalizations due to it :

A formula, which connects a polynomial to the n− th derivative of a function, is called

a Rodrigue’s formula for Exp.

Hn(x) = (−1)n exp(x2)
dn

dxn
[exp(−x2)], (Hermite) (1.1.1)

L(α)
n (x) =

x−αex

|n
dn

dxn
(e−nxn+α), (Laguerre) (1.1.2)
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Pn(x) =
1

2n|n
dn

dxn
(x2 − 1)n, (Legendre) (1.1.3)

and

P a,bn =
(−1)n(1− x)−a(1 + x)−b

2n|n
dn

dxn
[(1− x)n+a(1 + x)n+b], (Jacobi) (1.1.4)

These formula have been the sources of numerous researches.

(i) Another generalization due to Nicolas [6] is

Pn[x, f(x)] =
1

kn|n|(k − 1)n
d(k−1)n

dx(k−1)n
[f(x)n; (1.1.5)

Where k is an integar ≥ 2 and f(x) is a polynomial of degree k.

When K = 2 and f(x) = (x2 − 1) in (1.1.5), Pn[x, f(x)] transforms into the

Legendre Polynomials.

(ii) In 1929, Ghosh, N.N., has generalized the polynomials defined in (1.1.5) by the

expression

λna, b =
dn

dxn

[
xa
(

1
x
− x
)b]

(1.1.6)

where a, b are arbitrary constants. (1.1.6) evidently includes Legendre Polynomials

too, for we have

λn,n,n = (−1)n2n|npn(x).

(iii) Nicolas, Cioransen [6] has obtained a generalization of Legendre polynomials by

defining them by the formula

P (x;Q)
n =

1
An

d(k−1)n

dx(k−1)n
[{Q(x)}n] (1.1.7)

where Q(x) = (x− a1)(x− a2), · · · (x− ak) is a Polynomial of degree k and An is

a suitable constant.

(iv) B. S. Sastry has given the generalization of Laguerre Polynomials in another form,

viz.,

πn(x) = ex
dn

dxn
[e−xAn(x)]; (1.1.8)

where

An(x) = (a0, a1, a2, · · · , anx, 1)n.
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(v) Kesava Menon [8] has generalized Pn(x) in the form

Pn;s(x) =
1

sn|n
dn

dxn
(xs − 1)n (1.1.9)

where s is an integer ≥ 2.

When s = 2 the Polynomial Pn,s(x) becomes Legendre Polynomial. He has also

derived some properties of Pn,s(x).

(vi) The generalization due to A. Angelscu [4] is

πn(x) =
e−x

|n
dn

dxn
[ex ·An(x)] (1.1.10)

where An(x) is polynomial of degree n in x, such that

d

dx
An(x) = nAn−1(x).

(vii) Maurice de Duffabel has gone through the polynomials. Pn(x) where

Pn(x) =
ex

2

|n
dn

dxn
(xn · e−x2

). (1.1.11)

(viii) In (1901), Appell [2] has considered the class of polynomials

R2n(x) = Dn{xn(1− x2)n}. (1.1.12)

(xi) Starting with a Rodrigue’s formula, another interesting study is due to E. T. Bell.

He starts with the study of the Polynomials.

ξn(x, t, r) given by the relation

ξn(x, t, r) = exp(−r, tr) d
n

dxn
(exp ·(xtr)) (1.1.13)

(x) In (1955), P. C. Chetterjee has generalized the ordinary Hermite Polynomials Hn(z)

of integral order n. The generalized Hermite Polynomials. Hkm(z) and Hkm+1(z)

are defined as

Hkm(z) = ezkD
(km)
(k) (e−z

k
) (1.1.14)

Hkm+1(z) = −ezkd(km+k−1)
(k) (e−z

k
) (1.1.15)

where
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(i) m and mk are non-negative integers

(ii) k 6= 0 (clearly k may also be fractional)

(iii) D
′(k)
(k) = d

dz
1

zk−2
d
dz

(iv) D
′(k−1)
(k) = d

dzD
(k)
(k) so that

(v) D
′(k−1)
(k) = 1

zk−2
d
dz and

(vi) D
′(km)
(i) means the operator

D
′(km)
(k) operating on a function m times successively.

(xi) The generalization due to Subba Rao, is

Rn[x, a, b; f(x)] =
1

A(n)
dna

dxna
[f(x)]n (1.1.16)

where f(x) is a polynomial of degree n, b > a ≥ 1, a, b being +ve integers and

A(n) a constant; which is a suitable function of a, b and n only.

(xii) Let Dk
k stands for the operator d

dz

(
1

zk−2 · ddz
)

and Dkm
k for the operator (Dk

k)

repeated m times. In (1948), Sharm [7] has shown that

2Fi
[
−m,m+ 1

k ; 1(1− zk)2m
]

= Qkm(z)

= 1
k2m|2mD

km
k (1− zk)2m

(1.1.17)

where k = 2, it reduces to

P2m(z) =
1

22m|2m
d2m

dz2m
(1− z2)2m (1.1.18)

which is the well-known Rodrigue’s formula for the Legendre Polynomials.

(xiii) Chatterjee, S. K. [4] has shown that if k be a positive integer than

1
|n
x−αepx

k dn

dxn
(xα+nepx

k
)

is a polynomial of degree n and is denoted by

T
(α)
k,n (x, p) (1.1.19)

T (α)
n (x, 1) = L(α)

n (x).

He has defied an operational formula, a generating function and various recurrence

formulae, which are generalizations of the corresponding formulae for Lagurre

polynomials.
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1.2 Generalization of the Classical Polynomials with the help of Hypergeo-

metric forms

In (1947), Mery celine Fasenmyer [5] has obtained some basic formal properties of the

herpergeometric polynomials.

fn(ai; bj ;x) = fn(a1; a2; · · · ; ap, b1, b2, · · · , bq(x))

= p+2Fq+2

 −n n+ 1, (ap)

1/2, 1, (bq)
; z

 (1.2.1)

(n; a non-negative integer), in an attempt to unify and to extend the study of certain

polynomial sets.

SOME SPECIAL CASES OF fn(ai; bj ;x) are

(i) fn(1/2;−;x) = Pn(1− 2x) (Legendre)

(ii) fn(1;−;x) =
{
|n

(1/2)n

}
P

(−1/2,−1/2)
n (1− 2x) (Jacobi)

(iii) fn(1; 1/2; b, x) =
{
|n

(b)n

}
P

(b−1,1−b)
n (1− 2x) (Jacobi)

(iv) fn(1/2; a; p; v) = Hn(a, p, v) (Rice’s)

(v) fn
(

1
2 ; 1+z

2 ; 1; 1
)

= Fn(z) (Bateman’s)

(vi) fn(1/2; 1; t) = Zn(t) (Bateman’s)

(vii) fn
(

1
2 ,

z+m+1
2 ;m+ 1; 1

)
= Fmn (z). (Pasternak’s)

A generating function, differential and pure recurrence relations, contiguous polynomial

relations and integral relations for the polynomial fn(ai; bj ;x) have also been given by

her.

2. A natural generalization of Laguerre Polynomial in the form of a constant multiple

of Certain, 1Fq, viz.

1Fq

[
−n;

α+ 1
q

; · · · α+ q

q
;
(
x

q

)q]
(q = 0, 1, 2, · · · ) (1.2.2)

Has been given by Tascano [8] in (1956).
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3. Palam G. in (1950), has generalized L
(a)
n (x) in the form

L(a)
n (x) =

(1 + α)n
|n

ψ1[−n, v + 1;−α− 2n− 1/2 + 1; 2x] (1.2.3)

where ψ1 is one of the Humbert’s confluent hypergeometric functions of two vari-

ables.

1.3 Generalizations due to Series Representations

Struve’s function has been defined by the series

Hv(z) =
x∑
r=0

(−1)r
(
z
2

)v+2r+1∣∣∣(r + 3
2

) (∣∣∣v + r + 3
2

) . (1.3.1)

H. C. Gupta has defined the Struve’s function by means of the relation

Hv(z) =
2
(
z
2

)v+1∣∣∣(1
2

) (∣∣∣v + 3
2

)φ(1; 3/2, v + 3,
1
4
z2

)
. (1.3.2)

Another generalization of Struve’s function has been contributed by Bhowmick, K. N.

[3] in the form

µHv(z) =
∞∑
r=0

(−1)r
(
z
2

)v+2r+1∣∣∣(r + 3
2

) (∣∣∣v + r + 3
2

) , (µ > 0) (1.3.3)

If µ = 1; this reduces to the ordinary struves function.

In 1963, Ranyaranjan, S. K. has generalized the Laguerre Polynomials as follows:

π
(α)
n x

(1 + α)
=
∞∑
m=0

(
n
m

)
(−1)m

(1 + α)n
Am(x) (1.3.4)

where

An(x) = a0x
m +

(
m
1

)
a1x

m−1 + · · ·+ am−1

(
m

m− 1

)
x+ am.

If α = 0, he found (1.1.8).

He has also derived relation between π
(α)
n (x) and L

(α)
n (x). Some finite series involving

π
(α)
n (x), relations between π

(α)
n (x) and Bernoulli polynomials, relation between π

(α)
n (x)

and Legendre polynomials and integrals involving π(α)
n (x).
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1.4 Generalization with the help of Differential Equations

Menon, P. K. has generalized the Legendre functions by generating the legendre differ-

ential equations viz.

(1− z)2d
2y

dz2
− 2z

dy

dz
+ n(n+ 1)y = 0 (1.4.1)

This equation may be identified with hypergeometric equation.[
z2 d

dz2

(
z2 d

dz
− 1

2

)
− z2

(
z2 d

dz2
− n

2

)(
z2 d

dz2
+
d+ 1

2

)]
y = 0 (1.4.2)

where n is a positive integer, the differential equation admits of a polynomial solution

and a non-polynomials solution, both of which have well-known properties:

He has considered the generalized Hypergeometric equation.
w
(
w − 1

s

) (
w − 2

s

)
· · ·
(
w − s−1

s

)
− zs

(
w − n(s−1)

s

)
×
(
w + n+1

s

) (
w + n+2

s

)
· · ·
(
w + n+s−1

s

)
 y = 0 (1.4.3)

where w = z2 d
dzs .

When n is a positive integer, this has one polynomial solution and (s−1) other solutions.
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