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Abstract

The singularity of the coordinates in the case of infinite dimensional manifolds Is
discussed has no sense. Also, Gauss and Codazzi equations for hypersurfaces in
a Banash manifold are established. A generalization of the Schur theorem to the
case of Banach manifolds is given. Concepts of bending and equiaffinity are intro-
duced for infinite dimensional hypersurfaces in Hilbert manifolds and theorem on
local isometry of Hilbert manifolds of same constant sectional curvature is proved.
Finally, the class of hypersurfaces equiaffine to the hypersphere is described.

1. Notation and Definitions

By singularity, we mean a point at which a given mathematical object is not

defined or not “well behaved”. In infinite dimensional manifolds, the coor-

dinates has no sense. Therefore, to avoid such singularity we shall consider

finite codimensional Banach submanifolds.
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Let M be a Banach manifold of class Cr (r ≥ 2m∞) modeled on a Banach space E

and let N .. be a submanifold of M of the same class [3]. By Dix we denote the Frechet

derivative of the inclusion map i : N → M at the point x ∈ N and TxM the space of

all tangent vectors of M at the point x ∈ N [2].

Let (M,G) be a Riemannian manifold and N a submanifold of M with induced metric

g. The symmetric bilinear positive definite continuous functional f ∈ L2(E;R) is said

to be strongly non-singular if f associates a mapping

f∗ : x ∈ E → f∗x = f(x, ·) ∈ L(E;R) = E∗

which is bijective [2].

Assume that the metrics G and g are positive definite and strong non-singular. By

codim N = k < ∞, we mean that there exist charts C = (U, φ,E) at the point x ∈ M
and D = (V = U ∩N,ψ = Ø/V, F ⊂ E) at x ∈ N such that

codim F = dim(E/F ) = k <∞.

Assume that the chart C is fixed at x ∈ M . Define a mapping ωC,x : TxM → E as

follws: Let h ∈ TxM . From all equivalence pairs which define the vector h, we take the

pair (C, h) whose first componenet is our fixed chart C, then the second component h

can be taken as the image of ωC,x at h.

Let Lm1+m2(TxM,TxN ;R) (resp., Lm1+m2(TxM,TxN ;TxM) and Lm1+m2(TxM,TxN ;TxN))

be the space of all (m1 + m2)-linear continuous functionals (resp., mappings) from

(Tx,M)m1 × (TxN)m2 into R (resp., into TxM and TxN) which is complete normed

space [3]. Vectors of these spaces are called mixed tensors of type (0 + 0,m1 +m2), (1 +

0,m1,+m2) and (0 + 1,m1 +m2) resp. at the point x ∈ N ⊂M where m1 +m2 ≥ 0.

We shall denote the set of all tensors of the type (S1 + S2,m1 + m2) at the point

x ∈ N ⊂M by T s1+s2
m1+m2

(x) where s1 + s2 = 0, 1.

By∇1,2 we denote the operation of mixed covariant differentiation [4]. IfB ∈ T 1+0
m1+m2

(N),

then ∇1.2B ∈ T 1+0
m1+(m2+1)(N) and if C = (Uk, φ,E) and D = (V, ψ, F ) are two charts at

the point x ∈ N ⊂M and Γ, γ are the induced linear connections on M,N respectively,
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then for all P = ψ(x) ∈ ψ(V ) ⊂ F, y1, · · · , ym1 ∈ E and h, h1, · · · , hm2 ∈ F

∇1,2Bp(h; y1, · · · , y −m1, h1, · · · , hm2) = Bp(h; y1, · · · , ym1 , h1, · · ·hm2)

−
m1∑
1

Bp(y1, · · · , yj−1,Γi(p)(yj , Dip(h)), , yj+1, · · · , ym1 , h1, · · · , ym2)

−
m2∑
1

Bp(y1,= · · · , ym1 , h1, · · · , hj−1, γp(hj , h), hj+1, · · · , hm2)

+Γi(p)(Bp(y1, · · · , ym1 , h1, · · · , hm2)), Dip(h)).

2. Auxiliary Assertions

Assuming that at every point x ∈ N , the tangent space TxN to the submanifold N ⊂M
has an orthogonal complement (Tx, N)⊥,

(TxN)⊥ = {Y ∈ TxN : Gx(Y ,X) = 0 for all X ∈ TxN}

Such that TxN ⊕ (TxN)⊥ = TxM and the Banach spaces TxN × (TxN)⊥ and TxM are

isomorphic (here ⊕ is the operation of the direct sum of mutually orthogonal subspaces

TxN and (TxN)⊥ [3]. From the definition of the submanifold there exist charts C =

(U, φ,E) on M atthe point x ∈ M and D = (V = U ∩N,ψ = Ø/N, kF ⊂ E) on N at

the point x ∈ N such that Ø(V ) ⊂ F .

Then ωC,x((TxN)⊥) = F⊥p=ψ(x) ⊂ E, where F⊥p is the orthogonal complement of F ⊂ E
with respect to the metric G, i.e.m for all Z ∈ F .

Gi(p)(Z,Dip(X)) = 0. (1)

In [4] it is proved that all orthogonal comlements F⊥p of F are isomorphic to a Banach

space W and for every x ∈ N ⊂M there exists an isomorphism

nx : W → (TxN)⊥ ⊂ TxM

which satisfies the following property: For all x in N , there exist charts D = ()V, ψ, F )

at x ∈ N and C = (U,Ø, E) at the point ι(x) = x on M such that the mapping

n = p = ψ(x) ∈ ψ(V ) ⊂ F → np = ωC,x o nx ∈ L(W ;F⊥p )

is of class cr−1.
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Also, in [4] the first and the second derivative equations of the submanifold N are

established in the forms:

For all p = ψ(x) ∈ ψ(V ) ⊂ F and for all X ∈ F,Z ∈W,

∇12Dip(X1, X2) = np(Ap(X1, X2)) (2)

Dnp(X,Z) = DipHp((X,Z)) + np(Sp(X,Z)) (3)

whereAp ∈ L2(F ;W ), Hp ∈ L(F,W ;F ) and Sp ∈ L(F,W ;W ) are class Cr−2 and np is

the model of np with respect to the chart C.

3. Gauss and Codazzi Equations Gauss and Codazzi Equations for a

Hypersurface in a Banach Manifold

Now from integrability condition for the Equations (2),(3), Gauss and Codazzi equations

for the submanifold N in the Banach manifold M are obtained in [4] which have the

forms:

Ri(p)(Dip(X2);Dip(X3), Dip(X1)) +Dip((Hp(X3, Ap(X1, X2)

+np(Sp(X3, Ap(X1, X2)) +DAp(X3;X1, X2)−Ap(X1, γp(X2, X3)))

+Γi(p)(np(Ap(X1, X2)), Dip(X3)) = Dip(rp(X2, X3, X1))

+Dp(DH(X1;X2, X3) + γp(Hp(X2, X3), X1) +Hp(X1, Sp(X2, X3)))

+np(DSp(X1;X2, X3) + Sp(X1, Sp(X2, X3))

+Ap(X1, Hp(X2, X3))) + Γi(p)(Dip(Hp(X2, X3)), , Dip(X1)) = 0

where R and r denote the models of the curvature tensors R and r on the Banach

manifolds M and N with respect to the charts C on M and D on N respectively.

Similarly, Γ and γ are the models of the free-torsion connection Γ and γ on M and N

with respect to the charts C and D respectively.

Remark : In Gauss and Codazzi equations there exists an alternation with respect to

the underlined vectors, that does not involve division by

2. This convention will be used henceforth.

Gauss and Codazzi equations make more precise in the case of finite codimensional

Banash submanifolds. For this purpose let codim N = k < ∞. This means that there
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exist a chart C = (U, φ,E) at the point x on M and a chart D = (V = ∩N,ψ =

Ø/v, F ⊂ E) at x on M such that codim F = k <∞.

Now we consider the following theorem [las2] :

Theorem 3.1 : Let E be a Banach space, F ⊂ E be a closed subspace of E such that

codim F = k <∞ and let G be a strongly non-singular, symmetric bilinear form on E

such that G/F is weekly non-singular (i.e. G(Z, Y ) = 0 for all Y ∈ F implies Z = 0).

Then there exists k-dimensional vector subspace W orthogonal complement to F with

respect to G such that G/w is weekly non-singular form. Therefore for every Z ∈ W

we have that Z =
k∑
1
znen where en are fixed non-zero independent vectors in W . Now,

let np(en) = ξpn ∈ (TxN)⊥ is a differentiable vector of class Cr−1 for all n = 1, · · · , k.

Hence without loss of generality we can choose en ∈ W such that the vectors ξpn are

orthonormal for all n = 1, · · · , k. Therefore

Gi(p)(ξpn, Dip(X)) = 0 for all n = 1, · · · , k. (4)

Similarly, denoting Hp(X, en) = Hpn(X) ∈ F , then we have:

Ap(X1, X2) =
k∑
1

Apn(X1, nW (5)

Sp(X, en) = Spjn

k∑
1

Spnm(X)em ∈W. (6)

If we consider Equations (5),(6) then (2),(3) take the forms

∇12Dip(X1, X2) =
k∑
1

Apn(X1, X2)ξn (7)

Dξpn(X1) = Dip(Hpn(X1)) +
k∑

m=1

Spnm(X1)ξnm. (8)

Applying (5), (6), in Gauss equation and multiplying it’s both sides by Dip(X3) with

respect to the metric G and using each of (1), (4) we obtain

Gi(p)(Ri(p)(Dip(X2);Dip(X), Dip(X1)), Dip(X3))

+
k∑
1

Apn(X1, X2)Gi(p)(Dip(Hpn(X)), Dip(X3))
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+
k∑
1

Apn(X1, X2)Gi(p)(Γip(X), Dip(X3)) = gp(rp(X2, X,X1), X3). (9)

Now from (2) we can deduce that

∇12ξpn(X) = Dξpn(X) + (Γi(p)(ξpn, Dip(X)) (10)

Gi(p)(∇12ξpn(X), Dip(X3)) = −Gi(p)(ξpn,∇12Dip(X,X3)). (11)

Then substituting (8) into (9) and using (4), (10) and (11) we get

Gi(p)(Ri(p)(Dip(X2);Dip(X), Dip(X1)), Dip(X3))

+
k∑
1

Apn(X,X2)Gi(p)(ξpn∇12Dip(X1, X3) = gp(rp(X2;X,X1), X3)). (12)

substituting (7) into (12) we have

Gi(p)(Ri(p)(Dip(X2);Dip(X), Dip(X1)), Dip(X3))

+
k∑
1

Apn(X,X2)Apn(X1, X3) = gp(rp(X2;X,X1), X3). (13)

This is called Gauss equation for a Banach submanifold N of finite codimension k in a

Banach manifold M .

Applying (5),(6) in Gauss equation, then multiplying the result by ξpm with respect to

the metric G and using (4) we obtain

Gi(p)(Ri(p)(Dip(X2);Dip(X3), Dip(X1)), ξpn)

+
k∑
1

Apm(X1, X2)Spnm(X3) +∇12Apm(X3, X1, X2)

+
k∑
1

Apm(X1, X2)Gip(∇12ξpm(X3))−Dξpm(X), Dξpm = 0. (14)

Substituting by (8) into (14) and taking (4) into account we have that

Gi(p)(Ri(p)(Dip(X2);Dip(X3), Dip(X1)), ξpn)

+
k∑
1

Apm(X1, X2)Gip(∇12ξpm(X3), ξpn) = (∇12Apm(X1;X3, X2) (15)
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Which is called Codazzi equation for a Banach submanifold N of finite codimension k

in a Banach manifold M . Note that at k = 1 we obtain the equations of a hypersurface

N in a Banach manifold M .

4. Banach Manifold of Constant Sectional Curvature

Suppose that M be a differentiable manifold of constant sectional curvature [2] of

class Cr (r ≥ 3). Then the curvature tensor on M has the form [2]: For all x ∈
M,X1, X2, X3 ∈ TxM ,

Rx(X3, X1, X2) = βx(G3(X3, X2) ·X1 −Gx(X3, X1), X2) (16)

where βx is a real function of points of M . Now substituting Equation (1) and (16) into

(13) we obtain:

gp(βpgp(X2, X1) ·X − rp(X2;X,X1), X3) =
k∑
1

Apm(X,X2)Apn(X1, X3) = 0 17)

which is called Gauss equation for a Banach submanifold N of finite codimension k in

a differentiable manifold M of constant sectional curvature β.

Theorem 4.1 : If at each point of M the equality (17) holds, then β is constant.

Proof : Let M be a Riemannian manifold of constant sectional curvature β modeled

on a Banach space E. It is sufficient to prove the theorem locally with respect to an

arbitrary chart C = (U, φ,E) at a point x ∈ M . Let C ′ = (U ′, φ′, E′) be another chart

at the point x ∈ M . It is easy to see that β is independent of the choice of the choice

of the chart [las1]. Hence the transformation from the chart C to the chart C ′ does not

change the mapping βp, therefore

∇βp = Dβp. (18)

Covariant differentiation of (16) locally with respect to X3 ∈ E yields.

∇Rp(X4;X3, X1, X2) = Dβp(X4)Gp(X3, X2) ·X1, (19)

then substituting (19) in Bianchi’s identity [las3] we get

Dβp(X1)Gp(X2, X4) ·X3 +Dβp(X3)Gp(X2, X1) ·X4 +Dβp(X4)Gp(X2, X3) ·X1 = 0.
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Seen X1, X2, X3 are arbitrary vectors in E, then we can take Dβp(X1)Gp(X2, X4) = 0.

But Gp is non-singular and X2 is arbitrary in E, then we have Dβp(X1), X4 = 0. Also,

since X1, X4 are arbitrary in E, then Dβp = 0 for all p ∈ E which implies that β is

constant.

This theorem generalizes in the infinite dimensional case, the Schur theorem which is

known for finite dimensional manifolds [eize].

Hilbert Manifolds

Now, if M is a Hilbert manifold, then the metric G will be the scalar product 〈·, ·〉 on

E and the linear connection Γ on M will vanish, consequently the curvature tensor R

on M will be identically zero. Then Gauss equation will be

Dip(Hp(X3, Ap(X1, X2))) + np(Sp(X3, Ap(X1, X2))

+DAp(X3;X1, X2)−Ap(X1, γp(X2, X3))) = Dip(rp(X2;X3, X1)). (20)

Also, in this case Equations (1) and (2) will take the forms

gp(X1, X2) = 〈Dip(X1), Dip(X2)〉, (21)

〈np(Z), Dip(X)〉 = 0, (22)

for all X1, X1 ∈ F and Z ∈W .

Scalar multiplication of both sides of (20) by Dip(X) and using (21), (22) gives us

gp(Hp(X3, Ap(X1, X2)), X) = gp(rp(X2;X3, X1), X).

Since gp is non-singular, hence

rp(X2;X3, X1) = −Hp(X1, Ap(X3, X2)), (23)

which is called Gauss equation for a submanifold N of a Hilbert manifold M .

A second scalar multiplication of both sides of (20) by Z ∈ W and using that Z is

arbitrary and np is injective yields

Ap(X1, γp(X2, X3)) +DAp(X3, X1, X2) = Sp(X1, Ap(X3, X2)). (24)

Similary, since M is a Hilbert manifold, then Codazzi equation takes the form:

Dip(DHp(X1, X2, Z) + γp(Hp(X2, Z)X1) +Hp(X1, Sp(X2, Z)))
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+np(DSp(X1;X2, Z) + Sp(X1, Sp(X2, Z) +Ap(X1, Hp(X2, Z))) = 0. (25)

Scalar multiplication of (25) by Dip(X3), using (21), (22), taking into account that gp
is non-singular and X3 is arbitrary we obtain

DHp(X1;X2;Z) = γp(Hp(X2, Z), X1) +Hp(X1, Sp(X2, Z)) = 0. (26)

A second scalar multiplication of (25) by Z ∈ W , using (22), taking into account that

Z is an arbitrary and np is injective mapping we get

Ap(X1, Hp(X2, Z)) + Sp(X1, Sp(X2, Z)) +DSp(X1;X2, Z) = 0. (27)

Now we shall prove that (24) and (26) are equivalent. Differentiating identity (22) with

respect to X2 ∈ F we obtain

〈Dnp(X2, Z), Dip(X1)〉+ 〈np(Z), D2ip(X2;X1)〉 = 0.

Substituting by (2), (3) in the above equality and using (21) we get

gp(Hp(X2, Z), X1) + 〈np(Z), np(Ap(X2, X1))〉 = 0. (28)

Differentiating equivalent (28) with respect to X3 ∈ F and using (21) we have that

Dgp(X ′3Hp(X2, Z), X1) + gp(DHp(X3;X2, Z), X1)

+〈np(Sp(X3, Z), np(Ap(X2, X1)) + np(Z), np(Sp(X3, Ap(X2, X1)))

+np(DAp(X3, (X3;X2, X1))〉 = 0.

Since the fundamental metric tensor g is covariant constant, that is ∇g = 0, then the

above equation becomes

gp(Hp(X2, Z), γp(X1;X3)) + gp(γp(Hp(X2, Z), X3), X1

+gp(DHp(X3, X2, Z), X1) + 〈np(Sp((X3, Z), np(X2, X1))〉

+〈np(Z), np(Sp(X3, Ap(X2, X1)) +DAp(X3;X2, X1))〉 = 0. (29)

Applying the alternation convention and using (26), Equation (29) takes the form

−gp(Hp(X3, Sp(X2, Z)), X1) + gp(Hp(X2, Z), γp(X1, X3))
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+〈np(Sp(X3, Z), np(X2, X1))〉

+〈np(Z), np(Sp(X3, Ap(X2, X1)) +DAp(X3;X2, X1))〉 = 0. (30)

Replacing Z by Sp(X3, Z), , X1 by γp(X1, X3) in (28) and substituting in (30) we have

〈np(Z), np(Ap(X2, γp(X1, X3)) + Sp(X3(Ap(X2, X1)) +DAp(X3;X2, X1))〉 = 0. (31)

Since np(Z) is not zero for all Z ∈ W and the mapping np is injective, then from (31)

we have that

Ap(X2, γp(X1, X3)) + Sp(X3, Ap(X2, X1)) +DAp(X3;X2, X1)〉 = 0 (32)

which is the equality (24) if we replace X1 by X2 and X2 by X1, i.e. the equality (24)

follows from the equality (26).

On the other hand, using (24), (28) instead of (26) makes equation (29) in the form

gp(γp(Hp(X2, Z), X3) +DHp(X3;X2, Z)−Hp(X2;Sp(X3, Z)), X1) = 0. (33)

Since X1 is an arbitrary vector in F and gp is non-singular mapping, then we have that

γp(Hp(X2, Z), X3) +DHp(X1;X2, Z)−Hp(X2;Sp(X3, Z)), X1)) = 0, (34)

which is the equality (26) if we replace X3 by X1. Hence the equality (26) follows from

the equality (24), i.e. (24) and (26) are equivalent. Therefore Equations (23), (24) and

(27) represent Gauss and Codazzi equations for a submanifold N of a Hilbert manifold

M .

Let N be a hypersurface in M . Then dim W = 1 and therefore for every Z ∈ W we

have Z = λ · e, where λ ∈ R · e ∈ W is a non-zero fixed vector in W . In this case we

write

np(e) = ξp ∈ (TxN)⊥. (35)

Moreover, without loss of generality we can choose e ∈W such that ξp is a unit normal

vector. Similarly denote H∗p (X) and Ap(X1, X2) = αp(X1, X2) · e. Hence Equation (3)

has the form:

Dξp(X) = Dip(H∗p (X)), (36)

i.e.

Sp(X,Z) = 0 (37)
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and (28) will be

gp(H∗p (X2, X1)) = −αp(X1, X2). (38)

From (35), (37), (38) the condition (37) has the form

αp(X2, H
∗
p (X1)) · e = gp(H∗p (X2), H∗p (X1)) · e = 0 (39)

i.e. the condition (37) is satisfied identically. Hence Equations (23), (24) are Gauss and

Codazzi equations for a hypersurface N in a Hilbert manifold M . As an application of

this consideration we give the following theorem for local isometric Hilbert manifolds of

constant sectional curvature.

Theorem 5.1 : A hypersurface N of constant sectional curvature β in a Hilbert inan-

ifold M can be bent into a hypersurface if β = 0 and into a hypersurface if β > 0.

Proof : Suppose that the metric on the hypersurface N is given by the quadratic form

g. Since N is a space of constant sectional curvature, then its curvature tensor has the

form [las1]:

rx(X3;X1, X2) = βx(gx, X2)X1 − gx(X3, X1)X2). (40)

For all X1;X2, X3 ∈ TxN, x ∈ N and where βx is a real function of points of N . Then

from (40), it is clear that ∝= −
√
|β|g satisfies Gauss and Codazzi equations (23), (24)

such that H∗(X) =
√
|β| ·X.

Hence from “ Bonnet theorem ” [7] in the infinite dimensional case, there exists a unique

(up to a transformation, which preserves the scalar product 〈·, ·〉 in M) hypersurface S1

which is locally isometric to N . Therefore it is easy to show that “ Bonnet theorem”

carries a local character when β = 0, S1 will represent a hyperplane in M and when β >

0, S1 will be a hypersphere in M . This is evident from the equation 〈x = x0, x−x0〉 = 1
k .

Since, according to equality (38), a manifold of constant sectional curvature has the

same constant curvature, then this result can be restated as follows:

Theorem 5.2 : The necessary and sufficient condition for a Hilbert manifold to be

locally isomorphic to a manifold of constant sectional curvature is that it has the same

constant curvature.

Remark : If S1 is a hypersphere in M , then it is shown in [las1] that:

∝ (X1, X2) = −
√
|β|g(X1, X2), H∗(X) =

√
|β| ·X.
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6. Locally Equiaffine Hypersurfaces in Hilbert Manifold

Definition 6.1 [2] : The tow hypersurfaces N1 and N2 of a Hilbert manifold M are

called locally equiaffine if given any points x ∈ N1 and y ∈ N2 we can choose charts C

for N1 at x and D for N2 at y having the same image such that the induced connections

γ1 and γ2 with respect to the charts C,D respectively.

Theorem 6.1 : The locally equiaffine hypersurfaces of a Hilbert manifold M of constant

sectional curvature are the only hyperspheres.

Proof : Let g1 be the metric operator of a hypersphere S1 of curvature β1, then g2 = µg1

(where µ > 0) can be taken as the metric operator for a hypersphere S2 = (S2, g2) which

has curvature β1

µ . Since M is a Riemannian manifold, then we have [4]:

g2(γ2(X1, X2), X3) =
1
2

(Dg2(X1;X2, X3) +Dg2(X2;X1, X3)−Dg2(X3;X2, X1).

Substituting g2 = µg1 into the above equation we obtain

µg1(γ2(X1, X2), X3) = µg1(X1, X2), X3).

Since µ > 0, g1 is non-singular and X3 is arbitrary vector, then

γ2(X1, X2) = γ1(X1, X2),

therefore γ1 = γ2, i.e. S1 and S2 are locally equiaffine. Conversely, suppose that S1 and

S2 are locally equiaffine hypersurfaces in M, g1 and g2 are the metric operators on S1

and S2 resp., then we can choose two charts C on S1 and D on S2 such that γ1 = γ2,

which leads to γ1 = γ2, therefore from Gauss equation (4) we have

∝1
p (X1, X2)H∗1p (X3) =∝2

p (X1, X2)H∗2p (X3). (41)

Let X3 be an arbitrary vector in M such that ∝1
p (X2, X0) =∝2

p (X3, X0) = 0, then (41)

has the form:

∝1
p (X2, X0)H∗1p (X3) =∝2

p (X2, X0)H∗2p (X3). (42)

If ∝1 is the operator of the second fundamental form of a hypersphere S1 then from our

Remark we get

∝1
p (X2, X0) = −

√
|β1|g1

p(X2, X0), H∗1p (X3) =
√
|β1| ·X3,

−
√
|β1|g1

p(X2, X0) ·X3 =∝2
p (X2, X0)H∗2p (X3).
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Multiplication both sides of the above equation by X ∈ S2 with respect to the metric

g2 and using (39) yields

−
√
|β1|g1

p(X2, X0)g2
p(X3, X) = ∝2

p (X2, X0)g2
p(H

∗2
p (X3), X

= − ∝2 (X2, X0) ∝2
p (X,X3).

Suppose that at g1
p(X0, X0) = 1,∝2

p (X0, X0) = λ, λ 6= 0. Hence
√
|β1|g2

p(X3, X) =

λα2
p(X,X3), from which we get

∝2
p (X,X3) =

√
β1|
λ

g2
p(X,X3).
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