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Abstract

Belief function and plausibility function give one of the pair of lower and upper
limits of probability function respectively. We have another basic belief assignment
based on probability mass function. In this paper, belief function and plausibility
function obtained from this basic belief assignment, are used to obtain lower and
upper limits of distribution function and mean of probability distributions. Also
we tried to obtain these limits in terms of probabilities given by probability mass
function of probability distribution by using series results [6].

1. Introduction

In [3,4], a special case of upper and lower probabilities has been introduced by Dempster.

Existence of probability function is assumed, which is one to many mapping m from

space X to frame of discernment Θ. The lower probability of A in X is equal to the

probability of the largest subset of Θ such that its image under m is included in A. The

upper probability of A in space X such that the image under m of all elements have a
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non-empty intersection with A. In [11], belief functions on a system of sets of an infinite

or finite universe are represented by a probability measure or probability charge. In

Kyburg’s article [8], let set Π of all those probability distributions compatible with the

available information

∀ A ⊆ Θ, P ∗(A) = infp∈Πp(A) P∗(A) = supp∈Πp(A) (1)

with Π is a convex set of probability distributions. For confidence bands, F (x) ≤ F (x) ≤
F (x), where F (x) is not precisely known and we can specify F (x) and F (x) from R to

[0, 1]. Then the distribution band is Γ(F , F ) = (F |∀ x ∈ R, F (x) ≤ F (x) ≤ F (x)) [7].

If F (x) and F (x) are step functions then distribution band becomes probability box [5].

In [2], imprecise belief structures are set of belief structures whose masses on focal ele-

ments A, interval-valued constraints M = {m : ai ≤ m(Ai) ≤ bi}. The intervals [ai, bi]

specifying an imprecise belief structures are not unique if m(Ai) ≤ min.{bi, 1−
∑

j 6=i aj}.
Upper and lower bounds to m determine interval ranges for belief and plausibility func-

tions. Yager [12] considers same situations in which the masses of focal elements lie

in some known interval, allowing us to model realistically situation in which the basic

probability assignments can not be precisely identified.

In this paper, we calculate distribution function and mean of any given probability

distribution, if possible. By Shafer‘s basic belief assignment [10], probability of set,

belief of set and plausibility of set are equal. But in our defined basic belief assignment,

Bel(A) ≤ p(A) ≤ Pl(A), ∀A ⊆ Θ which is mentioned in Dempster‘s articles [3, 4].

Hence we calculate lower and upper limits of distribution function and mean of any

given probability distribution (sections 3-7). Here, we obtain lower and upper limits of

distribution function and mean by using steps:

1 Calculate distribution function and mean with help of given probability distribu-

tion.

2 Calculate lower and upper limits of already calculated distribution function and

mean by using belief functions and plausibility functions as lower and upper lim-

its of probability. Also we calculate distribution function and mean based on

probability of set.
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3 Dividing by distribution function and mean based on probability of set to distribu-

tion function and mean by using belief and plausibility functions and multiply by

distribution function and mean of distribution (by considering mutually disjoint

and exhaustive subsets of Θ). Thus, we get lower and upper limits of distribution

function and mean (by considering mutually disjoint and exhaustive subsets of

Θ).

2. Preliminaries

In this section,we provide necessary preliminaries about discrete belief function theory

[10], interval arithmetic [9] and discrete probability distribution theory [1].

2.1 Discrete Belief Function Theory [10]

Frame of Discernment :

Dictionary meaning of Frame of Discernment is frame of good judgement insight. The

word discern means recognize or find out or hear with difficulty. If frame of discernment

Θ is

Θ = {θ1, θ2, . . . , θn}

then every element of Θ is a proposition. The propositions of interest are in one -to -one

correspondence with the subsets of Θ. The set of all propositions of interest corresponds

to the set of all subsets of Θ, denoted by 2Θ. A function m : 2Θ → [0, 1] is called basic

probability assignment whenever

1. m(∅) = 0.

2.
∑

A⊂Θm(A) = 1.

The quantity m(A) is called A’s basic probability number and it is a measure of the

belief committed exactly to A. The total belief committed to A is sum of m(B), for all

proper subsets B of A.

Bel(A) =
∑
B⊂A

m(B). (2)

If Θ is a frame of discernment, then a function Bel : 2Θ → [0, 1] is called belief function

over Θ if it satisfies above condition (2). A function Bel : 2Θ → [0, 1] is belief function

if and only if it satisfies following conditions
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1. Bel(∅) = 0.

2. Bel(Θ) = 1.

3. For every positive integer n and every collection A1, A2, . . . , An of subsets of Θ

Bel(A1 ∪A2 ∪ . . . ∪An) ≥
∑

I⊂{1,2,··· ,n}

(−1)|I|+1Bel(
⋂
i∈I

Ai). (3)

Degree of doubt :

Dou(A) = Bel(Ā) or Bel(A) = Dou(Ā). (4)

The quantity pl(A) = 1 −Dou(A) =
∑

A∩B 6=∅
m(B) which expresses the extent to which

one finds A credible or plausible. We have relation between belief function, probability

mass (or density) function and plausibility function [3, 4] as:

Bel(A) ≤ p(A) ≤ Pl(A), ∀A ⊂ Θ. (5)

In Moore’s book [9], operations on intervals viz. addition, subtraction, multiplication,

division and functions on intervals are explained in detail. In division of intervals, if

union of intervals is (−∞,∞) then it is better to perform calculations and draw conclu-

sion on separate intervals whose union is (−∞,∞). From Bansi Lal and Sanjay Arora’s

book [1], we have referred preliminaries about distribution function and mean of discrete

probability distributions.

3. Lower and Upper Limits of Distribution Function

If |Θ| = n then every element in frame of discernment Θ is repeated exactly 2n−1

number of times and sum of probabilities of all subsets of Θ is 2n−1. Now, let A =

{{a1}, {a2}, . . . , {an}} ⊆ Θ. In discrete space, since singletons are disjoint, the inter-

section of any number of singleton subsets of Θ is always emptyset. Therefore we get

m(A) =
p(A)

2n−1
, ∀A ⊆ Θ. (6)

The quantity m(A) =
P (A)

2n−1
is a basic probability assignment.
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3.1 Indexing of Subsets of Θ

In order to apply stastistical concepts for our defined basic belief assignment, we apply

indexing of subsets of Θ as follows:

Let Θ = {θ1, θ2, . . . , θn} hence |Θ| = n. Number of subsets of Θ are 2n. We define

indicator function as :

For any subset A of Θ, IA(θi) =

{
0 if θi 6∈ A
1 if θi ∈ A.

(7)

If A = {θj , θk, θl, θm, θp, θq} then indexing number of A in Θ is

v =

n∑
i=1

IA(θi)2
i−1 = 2j−1 + 2k−1 + 2l−1 + 2m−1 + 2p−1 + 2q−1

Notes :-

1 0 ≤ v ≤ 2n − 1.

2 v = 0 corresponds to ∅.

3 v = 2n − 1 corresponds to Θ.

4 Any value in between 0 and 2n − 1 corresponds to proper subset of Θ.

5 Indexing of subsets of Θ is helpful in obtaining statistical quantities as it does not

affect results of statistics and mathematics.

With this indexing of set, we will obtain some statistical quantities from Bansi Lal and

Arora Sanjay‘s book [1] as :

1 Distribution Function: P (v) = P [V ≤ v] =
∑n

V =0 p(V ).

2 Expectation of V =Mean: E(V ) =
∑n

V =0 V p(V ).

With this indexing, we have following observations as:

1 As number of elements or subsets of Θ increases for indexing i.e V increases, value

of statistical quantities also increases.
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2 If indexing of elements or subsets of Θ is altered then value of statistical quantities

is also altered accordingly. If values of V are assigned according to size of subset

and subscript of variables θi, in ascending order then we get suitable value of

statistical quantities. If values of V are assigned according to probability of subset,

in descending order then we get smallest value of statistical quantities. If values

of V are assigned according to probability of subset and subscript of variables θi,

in ascending order then we get largest value of statistical quantities.

With these observations, we should choose indexing of subsets of Θ according to our

interest.

Now, we calculate distribution function P (X ≤ k) of given probability distribution with

help of probability mass function. For k = 0, 1, 2, . . . , n and by formula

2k−1∑
V =0

Bel(V )

2k−1∑
V =0

P (V )

P (X ≤ k) ≤ P (X ≤ k) ≤

2k−1∑
V =0

Pl(V )

2k−1∑
V =0

P (V )

P (X ≤ k), (8)

we get lower and upper limits of distribution function.

In another way, we can calculate lower and upper limits of probability distribution as:

By indexing of subsets of Θ, we have

X : 0 1 2 3 4

V : 1 2 4 8 16

Now subsets of Θ required for probability distribution, have relation between X and V

as:

Sr. No. Subset of Θ V

1 {x0} 1
2 {x0, x1} 1+2=3
3 {x0, x1, x2} 1+2+4=7
4 {x0, x1, x2, x3} 1+2+4+8=15
5 {x0, x1, x2, x3, x4} 1+2+4+8+16=31
...

...
...

k {x0, x1, x2, . . . , xk} 1 + 2 + 4 + · · ·+ 2k = 2k+1 − 1
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Now by notation

p(v) = p(Av) v = 0, 1, 2, 3, · · · , 2n − 1

By indexing of sets, F (x) = P (X ≤ x) = p({0, 1, 2, 3, . . . , n}) = p(Av) and only

in this case, relation between x and v is v = 2x+1 − 1, x = 0, 1, 2, 3, . . . , n. By

lower and upper limits of probability of sets, Bel(Av) ≤ P (Av) ≤ Pl(Av), we get

Bel(Av) ≤ F (X) ≤ x) ≤ Pl(Av), x = 0, 1, 2, 3, . . . , n and v = 2x+1 − 1 Therefore

we get lower and upper limits of distribution function of given probability distribution

including the case of subset ∅.

4. Lower and Upper Limits of Statistical Quantity of Probability Dis-

tribution

Here we calculate statistical quantity of given probability distribution with help of

probability mass function. Similar to distribution function, we can obtain lower and

upper limits of respective statistical quantity as:

Stat.Quan.Bel

Stat.Quan.prob.
Stat.Quan.pd ≤ Stat.Quan.pd ≤

Stat.Quan.Pl

Stat.Quan.prob.
Stat.Quan.pd (9)

where

Stat.Quan.Bel = Statistical quantity based on belief function of set

Stat.Quan.prob. = Statistical quantity based on probability of set

Stat.Quan.pd = Statistical quantity based on probability mass function of probability distribution

Stat.Quan.Pl = Statistical quantity based on plausibility function of set.

5. Calculation of Statistical Quantities based on Probability of set

Using formlae from Hall and Knight book [6], we find sums of some finite series as per
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our requirement. Consider

2n−1∑
V =0

V P (V ) = 0P (0) + 1P (1) + 2P (2) + 3P (3)

+ 4P (4) + 5P (5) + 6P (6) + 7P (7)

+ 8P (8) + 9P (9) + 10P (10) + 11P (11)

+ 12P (12) + 13P (13) + 14P (14) + 15P (15)

+
...

+ · · ·+ (2n − 1)P (2n − 1)

= 0P (∅) + 1P ({x1}) + 2P ({x2}) + 3(P ({x1}) + P ({x2}))

+ 4P ({x3}) + 5(P ({x1}) + P ({x3})) + 6(P ({x2}) + P ({x3}))

+ 7(P ({x1}) + P ({x2}) + P ({x3})) + 8P ({x4}) + 9(P ({x1}+ P ({x4}))

+ 10(P ({x2}+ P ({x4})) + 11(P ({x1}) + P ({x2}) + P ({x4}))

+ 12(P ({x3}) + P ({x4})) + 13(P ({x1}) + P ({x3}) + P ({x4}))

+ 14(P ({x2}+ P ({x3}) + P ({x4}))

+ 15(P ({x1}) + P ({x2}) + P ({x3}) + P ({x4}))

+
...

+ · · ·+ (2n − 1)(P ({x1}+ P ({x2}+ · · ·+ P ({xn}))
(10)

2n−1∑
V =0

V P (V ) = (1 + 3 + 5 + 7 + · · ·+ 2n − 1)P ({x1})

+ (2 + 3 + 6 + 7 + 10 + 11 + 14 + 15 + · · ·+ (2n − 2) + (2n − 1))P ({x2})

+ (4 + 5 + 6 + 7 + 12 + 13 + 14 + 15 + · · ·+ (2n − 4) + (2n − 3)

+ (2n − 2) + (2n − 1))P ({x3})

+
...

+ ((2n−1) + (2n−1 + 1) + (2n−1 + 2) + · · ·+ (2n−1 + (2n−1 − 1)))P ({xn}).
(11)
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Now we will calculate coefficients of P ({xj}), j = 1, 2, . . . , n as:

Consider 1 + 3 + 5 + 7 + · · ·+ (2n − 1)

= (2n−1)
2
.

(12)

Consider 2 + 3 + 6 + 7 + 10 + 11 + 14 + 15 + · · ·+ (2n − 2) + (2n − 1)

= 2 + 3 + 2(4) + 2 + 3 + 2(8) + 2 + 3 + 2(12) + 2 + 3 + 2(16) + 2 + 3

+ · · ·+ 8(2n−3 + 2n−4 + · · ·+ 22 + 21 + 20)

=
2n−3+2n−4+···+22+21+20∑

k=0

8k + (2 + 3)

= (2 + 3) +
2n−3+2n−4+···+22+21+20∑

k=1

8k + (2 + 3)

= (2 + 3) + (2 + 3)(2n−3 + 2n−4 + · · ·+ 22 + 21 + 20)

+ 8(2n−3 + 2n−4 + · · ·+ 22 + 21 + 20)(2n−3 + 2n−4 + · · ·+ 22 + 21 + 20 + 1)/2

= 5 + 5(2n−2 − 1)(2n + 5)

= 20(5 + (2n−2 − 1)(2n + 5)).

(13)

Consider 4 + 5 + 6 + 7 + 12 + 13 + 14 + 15 + · · ·+ (2n − 4) + (2n − 3) + (2n − 2) + (2n − 1)

= (4 + 5 + 6 + 7) + 4(8) + (4 + 5 + 6 + 7) + 4(16) + (4 + 5 + 6 + 7)

+ 4(24) + (4 + 5 + 6 + 7) + · · ·+ 32(2n−4 + 2n−5 + · · ·+ 22 + 21 + 20)

=
2n−4+2n−5+···+22+21+20∑

k=0

(4)(8)k + (4 + 5 + 6 + 7)

= (4 + 5 + 6 + 7) +

2n−4+2n−5+···+22+21+20∑
k=1

(4)(8)k + (4 + 5 + 6 + 7)

= (4 + 5 + 6 + 7) + 22(2n−4 + 2n−5 + · · ·+ 22 + 21 + 20)

+ 32(2n−4 + 2n−5 + · · ·+ 22 + 21 + 20)(2n−4 + 2n−5 + · · ·+ 22 + 21 + 20 + 1)/2

= 22 + (2n−3 − 1)(22 + 2(2n))

= 21(11 + (2n−3 − 1)(11 + 2n)).

(14)
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Consider 8 + 9 + 10 + 11 + 12 + 13 + 14 + 15 + 24 + 25 + 26 + 27 + 28 + 29 + 30 + 31

+ · · ·+ (2n − 8) + (2n − 7) + (2n − 6) + (2n − 5) + (2n − 4)

+ (2n − 3) + (2n − 2) + (2n − 1)

= (8 + 9 + 10 + 11 + 12 + 13 + 14 + 15)

+ 16(8) + (8 + 9 + 10 + 11 + 12 + 13 + 14 + 15)

+ 32(8) + (8 + 9 + 10 + 11 + 12 + 13 + 14 + 15)

+ 48(8) + (8 + 9 + 10 + 11 + 12 + 13 + 14 + 15)

+ · · ·+ 96 + (8 + 9 + 10 + 11 + 12 + 13 + 14 + 15)

=

2n−5+2n−6+···+22+21+20∑
k=0

(16)(8)k + (8 + 9 + 10 + 11 + 12 + 13 + 14 + 15)

= 4(23) +
2n−5+2n−6+···+22+21+20∑

k=1

(16)(8)k + (8 + 9 + 10 + 11 + 12 + 13 + 14 + 15)

= 4(23) + 4(23)(2n−5 + 2n−6 + · · ·+ 22 + 21 + 20)

+ (16)(8)(2n−5 + 2n−6 + · · ·+ 22 + 21 + 20)(2n−5 + 2n−6 + · · ·+ 22 + 21 + 20 + 1)/2

= 4{23 + (2n−4 − 1)(23 + 2n)}

= 22{23 + (2n−4 − 1)(23 + 2n)}.
(15)

By analogy, the coefficient of P ({xj}) is

K(j)∑
k=0

(2j−1)(2j)k + (2j−1 + (2j−1 + 1) + (2j−1 + 2) + · · ·+ (2j−1 + (2j−1 − 1)

whereK(j) = 2n−(j+1) + 2n−(j+1)−1 + · · ·+ 22 + 21 + 20

= (2j)(2j−1)k + 2j−2(2j−2 + 2j−1 − 1)

= (2j−2)(2n−j − 1)(2j−2 + 2j−1 − 1 + 2n) + 2j−2(2j−2 + 2j−1 − 1).

(16)
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The coefficient of P ({xn−1}) is

K(n−1)∑
k=0

(2n−2)(2n−1)k + (2n−2 + (2n−2 + 1) + (2n−2 + 2) + · · ·+ (2n−2 + (2n−2 − 1))

whereK(n−1) = 2n−((n−1)+1) = 20 = 1

=

0∑
k=0

(2n−1)(2n−1−1)k + 2(n−1)−2(2(n−1)−2 + 2(n−1)−1) + 2(n−1)−2(2n−3 + 2n−2 − 1)

= 2n−3(21 − 1)(2n−3 + 2n−2 − 1 + 2n) + 2(n−1)−2(2n−3 + 2n−2 − 1).

(17)

Finally, the coefficient of P ({xn}) is

∑
k=0

(2n−1)(2n)k + (2n−1 + (2n−1 + 1) + (2n−1 + 2) + · · ·+ (2n−1 + (2n−1 − 1)

=
∑
k=0

2n(2n−1)k + 2n−2(2n−2 + 2n−1 − 1)

= 2n−2(2n−2 + 2n−1 − 1).

(18)

Therefore by using (12)-(17), we have

2n−1∑
V =0

V P (V ) =
n∑

j=1

{
2n−(j+1)+2n−(j+1)−1+···+22+21+20∑

k=0

(2j−1)(2j)k

+ (2j−1 + (2j−1 + 1) + (2j−1 + 2) + · · ·+ (2j−1 + (2j−1 − 1)}p({xj})

=
n∑

j=1

{(2j−2)(2n−j − 1)(2j−2 + 2j−1 − 1 + 2n) + 2j−2(2j−2 + 2j−1 − 1)}p({xj}).

(19)

6. Calculation of Statistical Quantities Based on Belief of Set

Using formulae from Hall and Knight book [3], we find sums of some finite series as per
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our requirement. Consider

2n−1∑
V =0

V Bel(V ) = 0Bel(0) + 1Bel(1) + 2Bel(2) + 3Bel(3)

+ 4Bel(4) + 5Bel(5) + 6Bel(6) + 7Bel(7)

+ 8Bel(8) + 9Bel(9) + 10Bel(10) + 11Bel(11)

+ 12Bel(12) + 13Bel(13) + 14Bel(14) + 15Bel(15)

+
...

+ · · ·+ (2n − 1)Bel(2n − 1)

=
1

2n−1
{0 · 0 + 1 · 1p({x1}) + 2 · 1p({x2}) + 3 · 2(p({x1}) + p({x2}))

+ 4 · 1p({x3}) + 5 · 2(p({x1}) + p({x3})) + 6 · 2(p({x2}) + p({x3}))

+ 7 · 4(p({x1}) + p({x2}) + p({x3})) + 8 · 1p({x4}) + 9 · 2(p({x1}+ p({x4}))

+ 10 · 2(p({x2}+ p({x4})) + 11 · 4(p({x1}) + p({x2}) + p({x4}))

+ 12 · 2(p({x3}) + p({x4})) + 13 · 4(p({x1}) + p({x3}) + p({x4}))

+ 14 · 4(p({x2}+ p({x3}) + p({x4}))

+ 15 · 8(p({x1}) + p({x2}) + p({x3}) + p({x4}))

+
...

+ · · ·+ (2n − 1) · (2n−1)(p({x1}+ p({x2}+ · · ·+ p({xn}))
(20)

2n−1∑
V =0

V Bel(V ) =
1

2n−1
{(1 · 1 + 3 · 2 + 5 · 2 + 7 · 4 + · · ·+ (2n − 1) · (2n−1))p({x1})

+ (2 · 1 + 3 · 2 + 6 · 2 + 7 · 4 + 10 · 2 + 11 · 4 + 14 · 4 + 15 · 8

+ · · ·+ (2n − 2) · (2n−2) + (2n − 1) · (2n−1))p({x2})

+ (4 · 1 + 5 · 2 + 6 · 2 + 7 · 4 + 12 · 2 + 13 · 4 + 14 · 4 + 15 · 8

+ · · ·+ (2n − 4)(2n−3 + (2n − 3)(2n−2)

+ (2n − 2)(2n−2) + (2n − 1)(2n−1))p({x3})

+
...
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+ ((2n−1) · 1 + (2n−1 + 1) · 2 + (2n−1 + 2) · 2 + (2n−1 + 3) · 4 + · · ·

+ (2n−1 − 4) · (2n−3) + (2n−1 − 3) · (2n−2) + (2n−1 − 2) · (2n−2)

+ (2n−1 − 1) · (2n−1))p({xn})}.

(21)

To calculate coefficients of P ({xj}), j = 1, 2, . . . , n, we adopt following steps as:

1 Calculate recurrence relation between coefficients of p({x1}) with increasing values

of n.

2 Calculate coefficient of p({x1}) with value of n = j.

3 Calculate difference of coefficients of consecutive probabilities i.e. p({xj}) and

p({xj+1}) for fixed values of n.

4 Calculate coefficient of p({xj}) for given n.

6.1 Calculate recurrence relation between coefficients of p({x1}) with increas-

ing values of n

Now consider 1 · 1 + 3 · 2 + 5 · 2 + 7 · 4 + · · · + (2n − 1) · (2n−1). Here ak represents

coefficient of p({x1}) with value n = k. Here we use notation ar(1,Bel) = coefficient of

p({x1}) in
∑
V Bel(V ). Therefore for

∑
V Bel(V ) we have

a1
(1,Bel) = 1 · 1 = 1,

a1
(2,Bel) = 1 · 1 + 3 · 2 = 7,

a1
(3,Bel) = 1 · 1 + 3 · 2 + 5 · 2 + 7 · 4 = 45,

a1
(4,Bel) = 1 · 1 + 3 · 2 + 5 · 2 + 7 · 4 + 9 · 2 + 11 · 4 + 13 · 4 + 15 · 8 = 279,

a1
(5,Bel) = 1701, . . . and so on.

With analytic observations, we have, a1
(1,Bel) = 1 · 1 = 1,

a1
(2,Bel) = 1 · 1 + 3 · 2

= a1
(1,Bel) + 3(2)

= 3(a1
(1,Bel)) + 4(1)

= 3(a1
(1,Bel)) + 22(30).

(22)
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a1
(3,Bel) = 1 · 1 + 3 · 2 + 5 · 2 + 7 · 4

= a1
(2,Bel) + 5(2) + 7(4)

= 3a1
(2,Bel) + 8(3)

= 3a1
(2,Bel) + 23(31).

(23)

a1
(4,Bel) = 1 · 1 + 3 · 2 + 5 · 2 + 7 · 4 + 9 · 2 + 11 · 4 + 13 · 4 + 15 · 8

= a1
(3,Bel) + 9(2) + 11(4) + 13(4) + 15(8)

= 3a1
(3,Bel) + 16(9))

= 3a1
(3,Bel) + 24(32))

(24)

Similarly, a1
(5,Bel) = 3a1

(4,Bel) + 16(54) = 3a1
(4,Bel) + 32(27) = 3a1

(4,Bel) + 25(33), . . . and

so on. Therefore we have recurrence relation as:

a1
(1,Bel) = 1, and for n = 2, 3, 4, . . . , a1

(n,Bel) = 2n(3n−2) + 3a1
(n−1,Bel) (25)

6.2 Calculate recurrence relation between coefficients of p({x1}) with value

of n

by using (22)-(25)Consider

a1
(n,Bel) = 2n(3n−2) + 3a1

(n−1,Bel)

= 2n(3n−2) + 3(2n−13n−3 + 3a1
(n−2,Bel))

= 2n(3n−2) + 2n−13n−2 + 32a1
(n−2,Bel))

= 3n−2(2n + 2n−1) + 32a1
(n−2,Bel))

= 3n−2(3(2n−1)) + 32a1
(n−2,Bel))

= 3n−1(2n−1) + 32a1
(n−2,Bel)

...

= 3n−1(2n−1) + 3n−2(2n−2 + 2n−3 + 2n−4 + · · ·+ 22) + 3n−1a1
(1,Bel)

= 3n−1(2n−1) + 3n−2(
2n−1 − 22

2− 1
) + 3n−1a1

(1,Bel)

= 3n−1(2n−1) + 3n−2(2n−1 − 1)

(26)

6.3 Calculate difference of coefficients of consecutive probabilities i.e. p({xj})
and p({xj+1}) for fixed values of n.
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For this, we calculate differences of order one vertically for coefficient of p({x1}) and

p({x2}) for first four values of n i.e. n = 2, 3, 4, 5. Firstly we prepare a table of coeffi-

cients of p({xj}) for j ≤ n, n = 1, 2, 3, 4, 5 as:

n p({x1}) p({x2}) p({x3}) p({x4}) p({x5})
1 1
2 7 8
3 45 48 54
4 279 288 306 342
5 1701 1728 1782 1890 2006

Here we use notation dr(p,q,j,Bel) for difference between pth and qth columns with p < q ≤
n& j ≥ q for jth row in

∑
vrBel(v) for belief function Bel. For j = q, the difference

dr(p,q,j,Bel) is the first difference and further successive differences are dependent on this

difference with increasing j.

Differences in
∑
v1Bel(v) vertically for coefficient of p({x1}) and p({x2})for first four

values of n are 1, 3, 9, 27. In another way, 1 = 30, 3 = 31, 9 = 32, 27 = 34. Therefore,

the difference of coefficients p({x1}) and p({x2}) for n = k is 3k−2. Hence the difference

of coefficients p({x1}) and p({x2}) for n is d1
(1,2,n,Bel) = 3n−2.

Differences in
∑
v1Bel(v) vertically for coefficient of p({x2}) and p({x3})for first three

values of n = 3, 4, 5 are 6, 18, 54. In another way, 6 = 2(3) = 2(31), 18 = 2(9) =

2(32), 54 = 2(27) = 2(34). Therefore, the difference of coefficients p({x2}) and p({x3})
for n = k is 2(3k−2). Hence the difference of coefficients p({x2}) and p({x3}) for n is

d1
(2,3,n,Bel) = 2(3n−2).

Differences in
∑
v1Bel(v) vertically for coefficient of p({x3}) and p({x4}) for first two

values of n = 4, 5 are 36, 108. In another way, 36 = 4(9) = 4(32), 108 = 4(27) = 4(34).

Therefore, the difference of coefficients p({x3}) and p({x4}) for n = k is 4(3k−2). Hence

the difference of coefficients p({x3}) and p({x4}) for n is d1
(3,4,n,Bel) = 4(3n−2).

Differences of order one vertically for coefficient of p({x4}) and p({x5})for first value

of n = 5 is 216. In another way, 216 = 8(27) = 8(34). Therefore, the difference of

coefficients p({x4}) and p({x5}) for n = k is 8(3k−2). Hence the difference of coefficients

p({x4}) and p({x5}) for n is d1
(4,5,n,Bel) = 8(3n−2).

Continuing in this way, the difference in
∑
v1Bel(v), of coefficients p({xj−1}) and
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p({xj}) for n = k ≥ j is 2j−2(3k−2). Hence the difference of coefficients p({x4}) and

p({x5}) for n is d1
(j−1,j,Bel) = 2j−2(3n−2).

The difference of coefficients p({x1}) and p({xj}) for n is d1
(1,j,n,Bel) = 3n−2(1 + 2 + 4 +

· · ·+ 2j−2) which on simplification is 3n−2(2j−1 − 1).

6.4 Calculate coefficient of p({xj}) for given n

The coefficient of p({xj}) for n is sum of coefficient of p({x1}) for n and difference of

coefficients p({x1}) and p({xj}) for n. Therefore the coefficient of p({xj}) for n is
1

2n−1
{3n−1(2n−1) + 3n−2(2n−1 − 1) + 3n−2(2j−1 − 1)}.

Therefore by using coefficient of p({xj}) for given n, we have

2n−1∑
V−0

V Bel(V )

=

n∑
j=1

{ 1

2n−1
{3n−1(2n−1) + 3n−2(2n−1 − 1) + 3n−2(2j−1 − 1)}p({xj}).

(27)

7. Calculation of Statistical Quantities based on Plausibility of Set

As plausibility of set is an upper bound of probability of set, we will obtain upper limits

of statistical quantities in this section. Now consider

2n−1∑
V =0

V P l(V ) = 0Pl(0) + 1Pl(1) + 2Pl(2) + 3Pl(3)

+ 4Pl(4) + 5Pl(5) + 6Pl(6) + 7Pl(7)

+ 8Pl(8) + 9Pl(9) + 10Pl(10) + 11Pl(11)

+ 12Pl(12) + 13Pl(13) + 14Pl(14) + 15Pl(15)

+

...

+ · · ·+ (2n − 1)Pl(2n − 1)

=
1

2n−1
{0 + 1{2n−1p({x1}) + 2n−2[p({x2}) + p({x3}) + · · ·+ p({xn})]}

+ 2{2n−1p({x2}) + 2n−2[p({x1}) + p({x3}) + p({x4}) + · · ·+ p({xn})]}

+ 3{2n−1(p({x1}) + p({x2})) + 3 · 2n−3[p({x3}) + p({x4})
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+ p({x5}) + · · ·+ p({xn})]}

+ 4{2n−1p({x3}) + 2n−2[p({x1}) + p({x2}) + p({x4}) + · · ·+ p({xn})]}

+ 5{2n−1(p({x1}) + p({x3})) + 3 · 2n−3[p({x2}) + p({x4})

+ p({x5}) + · · ·+ p({xn})]}

+ 6{2n−1(p({x2}) + p({x3})) + 3 · 2n−3[p({x1}) + p({x4})

+ p({x5}) + · · ·+ p({xn})]}

+ 7{2n−1(p({x1}) + p({x2}) + p({x3})) + 7 · 2n−4[p({x4})

+ p({x5}) + · · ·+ p({xn})]}

+ 8{2n−1p({x4}) + 2n−2[p({x1}) + p({x2}) + p({x3}) + p({x5})

+ p({x6}) + · · ·+ p({xn})]}

+ 9{2n−1(p({x1}) + p({x4})) + 3 · 2n−3[p({x2}) + p({x3}) + p({x5}) + p({x6})

+ · · ·+ p({xn})]}

+ 10{2n−1(p({x2}) + p({x4})) + 3 · 2n−3[p({x1}) + p({x3}) + p({x5}) + p({x6})

+ · · ·+ p({xn})]}

+ 11{2n−1(p({x1}) + p({x2}) + p({x4})) + 7 · 2n−4[p({x3}) + p({x5}) + p({x6})

+ · · ·+ p({xn})]}

+ 12{2n−1(p({x3}) + p({x4})) + 3 · 2n−3[p({x1}) + p({x2}) + p({x5}) + p({x6})

+ · · ·+ p({xn})]}

+ 13{2n−1(p({x1}) + p({x3}) + p({x4})) + 7 · 2n−4[p({x2}) + p({x5}) + p({x6})

+ · · ·+ p({xn})]}

+ 14{2n−1(p({x2}) + p({x3}) + p({x4})) + 7 · 2n−4[p({x1}) + p({x5}) + p({x6})

+ · · ·+ p({xn})]}

+ 15{2n−1(p({x1}) + p({x2}) + p({x3}) + p({x4})) + 15 · 2n−5[p({x5}) + p({x6})

+ · · ·+ p({xn})]}

+

...

+ (2n − 1)2n−1(p({x1}) + p({x2}) + p({x3}) + · · ·+ p({xn}))}
(28)
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To calculate coefficients of p({xj}), j = 1, 2, . . . , n, we adopt following steps as:

1 Calculate coefficient of p({x1}) for given n.

2 Calculate difference of coefficients of consecutive probabilities i.e. p({xj}) and

p({xj+1}) for given n.

3 Calculate coefficient of p({xj}) for given n.

7.1 Calculation of coefficient of p({x1}) for given n

Here we classify sets according to cardinality of set containing some particular element

{x1} and not containing {x1} viz. set containing {x1} having plausibility 2n−1, single-

ton set not containing {x1} having plausibility (21−1)2n−2, set of cardinality 2 but not

containing {x1} having plausibility (22− 1)2n−3, set of cardinality 3 but not containing

{x1} having plausibility (23 − 1)2n−4, . . ., set of cardinality r but not containing {x1}
having plausibility (2r−1)2n−(r+1), and finally, set of cardinality n−1 but not contain-

ing {x1} having plausibility 2n−n(2n−1 − 1).The coefficient of p({x1}) is

set containing {x1} having plausibility 2n−1

+ singleton set not containing {x1} having plausibility (21 − 1)2n−2

+ set of cardinality 2 but not containing {x1} having plausibility (22 − 1)2n−3

+ set of cardinality 3 but not containing {x1} having plausibility (23 − 1)2n−4

...

+ set of cardinality r but not containing {x1} having plausibility (2r − 1)2n−(r+1)

+

...

+ set of cardinality n− 1 but not containing {x1} having plausibility (2n−1 − 1)2n−n

= 2n−1(1 + 3 + 5 + 7 + · · ·+ (2n − 1))

+ 2n−2 · 1(2 + 4 + 8 + 16 + · · ·+ 2n−1)

+ 2n−3 · 3(6 + 10 + 12 + 18 + 20 + 24 + 34 + 36 + 40 + 48 + · · ·+
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+ (2n−1 + 2) + (2n−1 + 2 + 2) + (2n−1 + 2 + 2 + 4) + · · ·+ (2n−1 + 2 + 2 + 4 + 8 + · · ·+ 2n−3))

+ 2n−4 · 7(14 + 22 + 26 + 28 + 38 + 42 + 44 + 50 + 52 + 56 + · · · )

+ 2n−5 · 15(30 + 46 + 54 + 58 + 60 + 78 + 86 + 90 + 92 + 102 + 106 + 108 + 114 + 116 + 120 + · · · )

+ 2n−6 · 31(62 + 94 + 110 + 118 + 122 + 124 + · · · )

+ 2n−7 · 63(126 + · · · )

+

...

+ 2n−(n−1)(2n−2 − 1)(2n−1 − 2 + · · ·+ (2n − (6 + 4)) + (2n − 6))

+ 2n−n(2n−1 − 1)(2n − 2)

(29)

The coefficient of p({x1}) becomes

= 2n−1(1 + 3 + 5 + 7 + · · ·+ (2n − 1))

+ 2n−2 · 1(

n−1∑
i1=1

2i1)

+ 2n−3 · 3(
n−1∑
i1=2

i1−1∑
i2=1

2i1 + 2i2)

+ 2n−4 · 7(

n−1∑
i1=3

i1−1∑
i2=2

i2−1∑
i3=1

2i1 + 2i2 + 2i3)

+ 2n−5 · 15(
n−1∑
i1=4

i1−1∑
i2=3

i2−1∑
i3=2

i3−1∑
i4=1

2i1 + 2i2 + 2i3 + 2i4)

+

...

+ 2n−j(2j−1 − 1)(

n−1∑
i1=j−1

i1−1∑
i2=j−2

i2−1∑
i3=j−3

· · ·
ij−2−1∑
ij−1=1

2i1 + 2i2 + 2i3 + · · ·+ 2ij−1)

+

...
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+ 2n−(n−1)(2n−2 − 1)(

n−1∑
i1=n−2

i1−1∑
i2=n−3

i2−1∑
i3=n−4

· · ·
in−3−1∑
in−2=1

2i1 + 2i2 + 2i3 + · · ·+ 2in−2)

+ 2n−n(2n−1 − 1)(

n−1∑
i1=n−1

i1−1∑
i2=n−2

i2−1∑
i3=n−3

· · ·
in−2−1∑
in−1=1

2i1 + 2i2 + 2i3 + · · ·+ 2in−1).

(30)

Now we will simplify summation part in each term separately and then simplify whole

expression.

Summation Part in First Term:-

We have

1 + 3 + 5 + 7 + · · ·+ (2n − 1) = (2n−1)
2
. (31)

Summation Part in Second Term:-

We have
n−1∑
i1=1

2i1 =
2n − 2

2− 1
. (32)

Summation Part in Third Term:-

To simplify summation part in third term, we require following results based on Knight

and Hall‘s book [6], as:

a+ (a+ d)r + (a+ 2d)r2 + (a+ 3d)r3 + · · ·+ (a+ (n− 1)d)rn−1

=
a

1− r
+
dr(1− rn−1)

(1− r)2 − (a+ (n− 1)d)rn

1− r
(33)

Now
n∑

k=1

k2k = 2
n∑

k=1

k2k−1

= 2[1 + 2 · 21 + 3 · 22 + 4 · 23 + · · ·+ n · 2n−1]

(34)

Comparing with above result, for series inside rectangular brakets, we get a = d =

1, r = 2.

n∑
k=1

k2k = 2[
1

1− 2
+

1(2)(1− 2n−1)

(1− 2)2 − (1 + (n− 1)1)2n

1− 2
]

= 2[1 + (n− 1)2n].

(35)
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The some part in summation part in third term in required expression becomes as:

n−1∑
i1=2

i12i1 =
n−1∑
i1=1

i12i1 − (1(2))

= 2[1 + (n− 2)2n−1]− 2

(36)

Therefore summation part in third term in required expression by using (33)-(36) be-

comes as:

n−1∑
i1=2

i1−1∑
i2=1

2i1 + 2i2 =
n−1∑
i1=2

{(i1 − 1)2i1 +

i1−1∑
i2=1

2i2}

=
n−1∑
i1=2

(i1 − 1)2i1 +
2i1 − 2

2− 1

= (n− 2)(2n − 2)

(37)

Summation Part in Fourth Term:-

To simplify summation part in fourth term, we require following results based on Knight

and Hall‘s book [6], as:

Let S = 1 + 3r + 5r2 + · · ·+ (2n− 3)rn−2

⇒ rS = r + 3r2 + 5r3 + · · ·+ (2n− 5)rn−2 + (2n− 3)rn−1

⇒ S(1− r) = 1 + 2r + 2r2 + 2r3 + · · ·+ 2rn−2 − (2n− 3)rn−1

⇒ S =
1

1− r
+

2r

1− r
(
1− rn−2

1− r
)− (2n− 3)rn−1

(1− r)
.

Using above sum, we have following sum as:

Let S = a2 + (a+ d)2r + (a+ 2d)2r2 + (a+ 3d)2r3 + · · ·+ (a+ (n− 1)d)2rn−1 .

⇒ rS = a2r + (a+ d)2r2 + (a+ 2d)2r3 + (a+ 3d)2r4 + · · ·+ (a+ (n− 1)d)2rn

On subtraction, we get

S(1− r) = a2 + 2adr + d2r + 2adr2 + 3d2r2 + 2adr3 + 5d2r3 + · · ·

+ 2adrn−1 + [(n− 1)2 − (n− 2)2]d2rn−1 − (a+ (n− 1)d)2rn

= a2 + 2adr(
1− rn−1

1− r
)

+
d2r

1− r
+

2d2r2(1− rn−2)

(1− r)2 − (2n− 3)d2rn

(1− r)
− (a+ (n− 1)d)2rn

(38)
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∴ S =
a2

1− r
+ 2adr(

1− rn−1

(1− r)2 )

+
d2r

(1− r)2 +
2d2r2(1− rn−2)

(1− r)3 − (2n− 3)d2rn

(1− r)2

− (a+ (n− 1)d)2rn

1− r
.

(39)

Put a = d = 1, r = 2,

S =
12

1− 2
+ 2(1)(1)2(

1− 2n−1

(1− 2)2 )

+
12(2)

(1− 2)2 +
2(12)(22)(1− 2n−2)

(1− 2)3 − (2n− 3)12(2n)

(1− 2)2

− (1 + (n− 1)1)2(2n)

1− 2

= −3 + 2n(n2 − 2n+ 3)

(40)

Therefore summation part in fourth term in required expression by using (38)-(40) be-

comes as:

n−1∑
i1=3

i1−1∑
i2=2

i2−1∑
i3=1

2i1 + 2i2 + 2i3

= 2n−1(n2 − 4n+ 6)− (n− 2)2n−1)− 2n − n2 + n+ 4n− 6

= (2n−1 − 1)(n− 2)(n− 3).

(41)

Summation Part in Fifth Term:-

To simplify summation part in fifth term, we require following results based on Knight

and Hall‘s book [6], as:

Let S = a3 + (a+ d)3r + (a+ 2d)3r2 + (a+ 3d)3r3 + · · ·+ +(a+ (n− 1)d)3rn−1.

⇒ rS = a3r(a+ d)3r2 + (a+ 2d)3r3 + (a+ 3d)3r4 + · · ·+ (a+ (n− 1)d)3rn.
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On substraction, we get

S − rS = a3 + 3a2dr + 3ad2r + d3r + 3a2dr2 + 9ad2r2 + 7d3r2 + 3a2dr3 + 15ad2r3 + 19d3r3

+ · · ·+ 3a2drn−1 + (3a(n− 1)2 − 3a(n− 2)2)d2rn−1 + ((n− 1)3 − (n− 2)3)d3rn−1

− (a+ (n− 1)d)3rn

= a3 + 3a2dr(
rn−1 − 1

r − 1
) + 3ad2r(

n∑
2

(2n− 3)rn−2)

+ d3r(
n∑
2

(3n2 − 9n+ 7)rn−2)− (a+ (n− 1)d)3rn

(42)

Put a = d = 1 and r = 2.

S(1− 2) = 1 + 3(12)(1)2(
2n−1 − 1

2− 1
) + 3(1)(12)2(

n∑
2

(2n− 3)2n−2)

+ 132(
n∑
2

(3n2 − 9n+ 7)2n−2)− (1 + (n− 1)1)32n

S = −1− 6(2n−1 − 1)− 6(

n∑
2

(2n− 3)2n−2)

− 2(
n∑
2

(3n2 − 9n+ 7)2n−2) + n32n

S = −1− 6(2n−1 − 1)− 3
n∑
2

n22n−1 + 3
n∑
2

n2n−1 +
n∑
2

2n + n32n

(43)

As we have formulae,∑n
1 n

22n−1 = −3 + 2n(n2 − 2n+ 3)

and
∑n

1 n2n = 2[1 + (n− 1)2n]

Using these formulae, we have

S = −1− 6(2n−1 − 1)− 3
n∑
2

n22n−1 + 3
n∑
2

n2n−1 +
n∑
2

2n + n32n

= 2n(n3 − 3(n2) + 9n− 13) + 13.

(44)

Therefore
∑n

1 n
32n−1 = 2n(n3 − 3(n2) + 9n− 13) + 13.

⇒
∑n

1 n
32n = 2n+1(n3 − 3n2 + 9n− 13) + 26.

Therefore summation part in fifth term in required expression by using (42)-(44) be-

comes as:
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n−1∑
i1=4

i1−1∑
i2=2

i2−1∑
i3=1

i3−1∑
i4=1

2i1 + 2i2 + 2i3 + 2i4

=

n−1∑
i1=4

i1−1∑
i2=3

i2−1∑
i3=2

{(i3 − 1)(2i1 + 2i2 + 2i3) +

i3−1∑
i4=1

2i4}

= (1/6)(2n − 2)(n− 2)(n− 3)(n− 4)

(45)

Therefore by using (31), (32), (37), (41) and (45), we have coefficient of p({x1} in∑
V P l(V ) as:

2n−1(1 + 3 + 5 + 7 + · · ·+ (2n − 1))

+ 2n−2 · 1(
n−1∑
i1=1

2i1)

+ 2n−3 · 3(

n−1∑
i1=2

i1−1∑
i2=1

2i1 + 2i2)

+ 2n−4 · 7(
n−1∑
i1=3

i1−1∑
i2=2

i2−1∑
i3=1

2i1 + 2i2 + 2i3)

+ 2n−5 · 15(
n−1∑
i1=4

i1−1∑
i2=3

i2−1∑
i3=2

i3−1∑
i4=1

2i1 + 2i2 + 2i3 + 2i4)

+

...

+ 2n−j(2j−1 − 1)(
n−1∑

i1=j−1

i1−1∑
i2=j−2

i2−1∑
i3=j−3

· · ·
ij−2−1∑
ij−1=1

2i1 + 2i2 + 2i3 + · · ·+ 2ij−1)

+

...

+ 2n−(n−1)(2n−2 − 1)(

n−1∑
i1=n−2

i1−1∑
i2=n−3

i2−1∑
i3=n−4

· · ·
in−3−1∑
in−2=1

2i1 + 2i2 + 2i3) + · · ·+ 2in−2)
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+ 2n−n(2n−1 − 1)(
n−1∑

i1=n−1

i1−1∑
i2=n−2

i2−1∑
i3=n−3

· · ·
in−2−1∑
in−1=1

2i1 + 2i2 + 2i3) + · · ·+ 2in−1)

= 2n−1(2n−1)
2

+
n∑

r=2

2n−r(2r−1 − 1)
1

(r − 2)!
(2n − 2)(n− 2)(n− 3)(n− 4) · · · (n− (r − 1)).

(46)

7.2 Calculate difference of coefficients of consecutive probabilities i.e. p({xj})
and p({xj+1}) for given n

We have table of coefficients in
∑
V P l(V ) by neglecting denominator term 2n−1 and

differences of consecutive columns in round brackets as:

n p({x1}) p({x2}) p({x3}) p({x4}) p({x5})
1 1
2 10 (1) 11
3 94 (3) 97 (6) 103
4 834 (9) 843 (18) 861 (36) 897
5 7126 (27) 7153 (54) 7207 (108) 7315 (216) 7531

Therefore for n, differences of consecutive columns are

(20)(2n−2), (21)(2n−2), (22)(2n−2), (23)(2n−2), · · · .

Hence for n, difference of (j − 1)th and jth columns is (2j−2)(2n−2) = 2n+j−4. Now

difference of first and jth columns is sum of differences of consecutive columns viz. first

and second columns, second and third columns, third and fourth columns up to (j − 1)th

and jth columns. Therefore difference of first and jth columns is

(20)(2n−2) + (21)(2n−2) + (22)(2n−2) + (23)(2n−2) + · · ·+ (2j−2)(2n−2)

= (2n−2)(2j−1 − 1)
(47)

The coefficient of p({xj}) by neglecting denominator term 2n−1 is sum of coefficient of

p({x1}) by neglecting denominator term 2n−1 and difference of first and jth columns.

The coefficient of p({xj}) by neglecting denominator term 2n−1 is
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2n−1(2n−1)
2

+
n∑

r=2

2n−r(2r−1 − 1)
1

(r − 2)!
(2n − 2)(n− 2)(n− 3)(n− 4) · · · (n− (r − 1))

+ (2n−2)(2j−1 − 1)

(48)

Finally, the coefficient of p({xj}) by considering denominator term 2n−1 is

1/(2n−1)[2n−1(2n−1)
2

+
n∑

r=2

2n−r(2r−1 − 1)
1

(r − 2)!
(2n − 2)(n− 2)(n− 3)(n− 4) · · · (n− (r − 1))

+ (2n−2)(2j−1 − 1)]

(49)

Therefore by using (49), we have

2n−1∑
V =0

=

n∑
j=1

1/(2n−1)[2n−1(2n−1)
2

+

n∑
r=2

2n−r(2r−1 − 1)
1

(r − 2)!
(2n − 2)(n− 2)(n− 3)(n− 4)

· · · (n− (r − 1)) + (2n−2)(2j−1 − 1)]

(50)

Therefore lower limits and upper limits of arithmetic mean is obtained by using equa-

tions (9), (19), (27) and (50).

8. Illustrative Example

Let X ∼ Binomial(n, p). Therefore p(x) =
(
n
p

)
pxqn−x. Now we connsider n = 4, p =

2/3 and q = 1− p = 1/3. The distribution of X is

X : 0 1 2 3 4 Total

p(x) : 1/81 8/81 24/81 32/81 16/81 1

Now by notation

p(v) = p(Av) v = 0, 1, 2, 3, · · · , 25 − 1

By indexing of sets, F (x) = P (X ≤ x) = p({0, 1, 2, 3, . . . , x}) = p(Av) and only in this

case, relation between x and v is v = 2x+1 − 1, x = 0, 1, 2, 3, 4. By lower and upper

limits of probability of sets, Bel(Av) ≤ P (Av) ≤ Pl(Av), we get Bel(Av) ≤ F (X) ≤
x) ≤ Pl(v), x = 0, 1, 2, 3, 4 andv = 2x+1 − 1 Therefore we get lower and upper limits

of distribution function of given probability distribution including the case of subset ∅ as
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Sr. No. x subset of Θ v Bel(Av) P (Av) Pl(Av)
1 0 {x0} 1 1/1296 1/81 656/1296
2 1 {x0, x1} 3 18/1296 9/81 1008/1296
3 2 {x0, x1, x2} 7 132/1296 33/81 1200/1296
4 3 {x0, x1, x2, x3} 15 520/1296 65/81 1280/1296
5 4 {x0, x1, x2, x3, x4} 31 1296/1296=1 81/81=1 1296/1296=1

Now we will calculate mean of given probability distribution in following table.

X P (X) XP (X)

0 1/81 0
1 8/81 8/81
2 24/81 48/81
3 32/81 96/81
4 16/81 64/81∑

1 216/81

Therefore we have mean of given probability distribution µ
′
1 = 216/81. Now we

will calculate
∑2n−1

V =0 V Bel(V ),
∑2n−1

V =0 V P (V ) and
∑2n−1

V =0 V P l(V ) from coefficients of

P ({xj}), j = 0, 1, 2, 3, 4. These values are given in following tables.

∑
P ({x0}) P ({x1}) P ({x2}) P ({x3}) P ({x4})∑

V 1Bel(V ) 1701 1728 1755 1782 1809∑
V 1P (V ) 256 264 280 312 376∑
V 1Pl(V ) 7126 7153 7207 7315 7531

First Raw Moments based on Probability of set :-

The rth ordered raw moment based on probability of set is denoted by µ
′′
r and is given

by µ
′′
r =

25−1∑
v=0

vrp(v). Now we calculate first raw moments based on probability of set

viz. µ
′′
1 .

µ”
1 =

25−1∑
v=0

vp(v)

= 309.728395.

(51)

First Raw Moments based on Belief of set :-
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The rth ordered raw moment based on belief of set is denoted by µ
′′

r
and is given by

µ
′′

r
=

25−1∑
v=0

vrBel(v). Now we calculate first raw moments based on belief of set viz. µ”
1
.

µ
′′

1
=

25−1∑
v=0

vBel(v)

= 0Bel(0) + 1Bel(1) + 2Bel(2) + 3Bel(3) + · · ·+ (25 − 1)Bel(25 − 1) = 117.645833.

(52)

First Raw Moments based on Plausibility of set :-

The rth ordered raw moment based on plausibility of set is denoted by µ
′′
r and is given

by µ
′′
r =

∑25−1
v=0 vrPl(v). Now we calculate first raw moments based on plausibility of

set viz. µ
′′
1 .

µ
′′
1 =

25−1∑
v=0

vP l(v)

= 0Pl(0) + 1Pl(1) + 2Pl(2) + 3Pl(3) + · · ·+ (25 − 1)Pl(25 − 1) = 456.708333.

(53)

Lower and Upper limits of First Raw Moment i.e. Arithmetic Mean :-

By using (9) and (51)-(53), we calculate lower and upper limits of first raw moment,

µ
′′

1

µ
′′
1

µ
′
1 ≤ µ

′
1 ≤

µ
′′
1

µ
′′
1

µ
′
1

1.012895 ≤ 2.6667 ≤ 3.932119

µ
′

1
≤ µ′1 ≤ µ

′
1.

(54)

8. Future Scope

Using same approach, we can obtain lower and upper limits of several statistical quanti-

ties such as kth ordered raw and central moments, coefficients of skewness and kurtosis

based on central moments for probability distributions of one variable. Same approach

can be extended to multivariate probability distributions.

9. Conclusion

Instead of having single value of statistical quantity, it is always better to have an interval

in which this required single value is included. In this way we include uncertainty

regarding a single value of statistical quantity. While obtaining lower and upper limits
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of distribution function and mean of probability distribution, we have taken care of

getting more suitable limits. The lower and upper limits obtained by this approach are

too wide but definitely contains all possibilities (i.e. all cases of uncertianty). This is

one of the approach to find lower and upper limits of statistical quantities. We hope

that this approach may be very useful in further research.

References

[1] Bansi Lal Sanjay Arora, Mathematical Statistics, Satya Publications, New Delhi,
(1989).

[2] Deneoux Thierry, Reasoning with imprecise Belie Structures, International Jour-
nal of Approximate Reasoning, 1(20) (1999), 79-111.

[3] Dempster A. P., Upper and Lower probabilities induced by a multivalued map-
ping, Annals of Mathematical Statistics, 38 (1967),325-339.

[4] Dempster A. P., Upper and lower probabilities generated by a random closed
interval, Annals of Mathematical Statistics, 39(3) (1968), 957-966.

[5] Ferson S., Kreinovtch V., Ginnzburg L., Myers D. S., Sentz K., Constructing
Probability Boxes and Dempster-Shafer Structures, Technical Report, SAND2002
- 4015, Sandia National Laboratory, Albuquerque, Nm, (2003).

[6] Hall H. S., Knight S. R., Higher Algebra, MacMilan & Co., New York, (1891).

[7] Krieglar E., Held H., Utilizing belief functions for the estimation of nature cli-
mate change, International Journal of Approximate Reasoning, 39(2-3) (2005),
185-209.

[8] Kyburg H. E., Baysian and non-Bayesian updating, Artificial Intelligence, 31
(1987), 271-294.

[9] Moore Ramon E., Kearfott R. Baker and Cloud Michael J., Introduction to
Interval Analysis, Society for Industrial and Applied Mathematics, Philadephia,
PA, USA, (2009).

[10] Shafer Glenn, A Mathematical Theory of Evidence, Princeton University Press,
NJ, (1976).

[11] Shafer Glenn, Allocation of probability, Annals of Probability, 7(5) (1979),
827-839.

[12] Yager Ronald R., Dempster-Shafer belief structures with interval valued focal
weights, International Journal of Intelligent Systems, 16(4) (2001), 497-512.


