
International J. of Pure & Engg. Mathematics (IJPEM)

ISSN 2348-3881, Vol. 5 No. III (December, 2017), pp. 45-62

NEW CONSONANT BELIEF FUNCTION INDUCED BY

PROBABILITY MASS FUNCTION

D. N. KANDEKAR
Department of Mathematics,

Dadapatil Rajale Arts & Science College, Adinathnagar-414505,
Tal.:- Pathardi, Dist.:- Ahmednagar. (M.S.), India

Abstract

Usually authors are using approaches from belief function to probability and rarely
some of the authors are using approaches from probability to belief functions. In
this paper, we define a consonant basic belief assignment induced by probability
mass function hence belief function. Here we will study various properties of conso-
nant basic belief assignment induced by probability density function defined by us.
Here we obtain lower and upper limits of raw and central moments, and coefficients
of skewness and kurtosis of discrete probability distributions.

1. Introduction

In the world of uncertainty, each and every incidence occurring in our day to day life

always follows some known or unknown probability distribution. Therefore choice of

appropriate probability distribution plays an important role in decision making. Hence

it becomes necessary that we should know common characteristics of all probability

distributions.
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Here we define a new transformation which transforms probability mass function into

basic belief assignment hence belief function for consonant focal elements. While ob-

taining this new transformation, we concentrate on sufficient axioms for basic belief

assignment which must be satisfied by our new transformation. Once we have obtained

such new transformation, we are able to find other functions related to basic belief as-

signment. Also we will check that this new transformation satisfies some more additional

properties so that we can recognize the true class of this new transformation.

In this paper, firstly we summrise preliminaries of discrete belief functions and proba-

bility functions then in section 3, we will explain steps in the development of this new

transformation. Nextly We deduce some results of our discrete belief function. In sec-

tion 4, we obtain lower and upper limits of raw and central moments, and coefficients of

skewness and kurtosis. In section 5, we illustrate these concepts by an example. Finally,

we conclude about this paper and give list of references.

Now we summarize preliminaries of discrete belief functions and probability functions.

2. Preliminaries

2.1 Discrete Belief Function Theory

Frame of Discernment : Dictionary meaning of Frame of Discernment is frame of

good judgement insight. The word discern means recognize or find out or hear with

difficulty. In Shafer‘s book [7], if frame of discernment Θ is

Θ = {θ1, θ2, . . . , θn}

then every element of Θ is a proposition. The propositions of interest are in one -to -one

correspondence with the subsets of Θ. The set of all propositions of interest corresponds

to the set of all subsets of Θ, denoted by 2Θ.

If Θ is frame of discernment, then a function m : 2Θ → [0, 1] is called basic probability

assignment whenever m(∅) = 0 and
∑

A⊂Θm(A) = 1. The quantity m(A) is called

A’s basic probability number and it is a measure of the belief committed exactly

to A.The total belief committed to A is sum of m(B), for all proper subsets B of

A. . A function Bel : 2Θ → [0, 1] is called belief function over Θ if it satisfies

Bel(A) =
∑

B⊂Am(B). If Θ is a frame of discernment, then a function Bel : 2Θ → [0, 1]

is belief function if and only if it satisfies following conditions
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1. Bel(∅) = 0.

2. Bel(Θ) = 1.

3. For every positive integer n and every collection A1, A2, . . . , An of subsets of Θ

Bel(A1 ∪A2 ∪ . . . ∪An) ≥
∑

I⊂{1,2,··· ,n}

(−1)|I|+1Bel(
⋂
i∈I

Ai). (1)

A subset of a frame Θ is called a focal element of a belief function Bel over Θ

if m(A) > 0. The union of all the focal elements of a belief function is called its

core.The quantity Q(A) =
∑

B⊂Θ,A⊂Bm(B) is called commonality number for A

which measures the total probability mass that can move freely to every point of A.

A function Q : 2Θ → [0, 1]] is called commonality function for Bel. Also Bel(A) =∑
B⊂Ā and Q(A) =

∑
B⊂A(−1)|B|Bel(B̄)for all A ⊂ Θ.

Degree of doubt :

Dou(A) = Bel(Ā) or Bel(A) = Dou(Ā) and pl(A) = 1−Dou(A) =
∑

A∩B 6=∅

m(B) (2)

which expresses the extent to which one finds A credible or plausible. In Dempster‘s

articles [4, 5], we have relation between belief function, probability function and plau-

sibility function is

Bel(A) ≤ p(A) ≤ Pl(A), ∀A ⊂ Θ. (3)

In Billingsley [2], a function P : Θ→ [0, 1] is called probability function if

1 ∀A ∈ Θ, 0 ≤ P (A) ≤ 1.

2 P (Θ) = 1.

A set function µ on a frame of discernment Θ is a measure if it satisfies following

three conditions:

1. µ(A) ∈ [0,∞], for all A ∈ Θ.

2. µ(∅) = 0.

3. Additive Property : For collection A1, A2, . . . , An, . . .,

Bel(∪∞i=1Ai) =
∑

I⊂1,2,...,n,...
I 6=∅

(−1)|A|+1Bel(∩∞i=1Ai). (4)
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The measure is finite or infinite as µ(Θ) < ∞ or µ(Θ) = ∞. It is probability measure

if µ(Θ) = 1 [2].

In Shafer‘s book [7], If Θis frame of discernment then a function Bel : 2Θ → [0, 1] is

called Bayesian Belief Function if

1 Bel(∅) = 0,

2 Bel(Θ) = 1,

3 Bel(A ∪B) = Bel(A) +Bel(B) whenever A,B ∈ Θ and A ∩B = ∅.

Also we have some other basic belief assignments and we will briefly introduce these

bbas.

Classical Pignistic Probability:- Philippe Smets [9] had given basic idea about clas-

sical pignistic probability and implemented in Transferable Belief Model. It transfers

positive mass of belief of each non-specific element onto the singletons involved in that

element split by the cardinality of the proposition when working with normalized basic

belief assignments. In TBM, the classical pignistic probability is

BetP (∅) = 0 and ∀ A ∈ 2Θ − {∅}

BetP (A) =
∑
B∈2Θ,
B 6=∅

|A ∩B|
|B|

m(B)

1−m(∅)
. (5)

In Shafer [7], m(∅) = 0 hence above formula becomes

BetP (θi) = mθi +
∑
B∈2Θ,
θi⊂B

m(B)

|B|
and BetP (A) =

∑
θi∈A

BetP (θi). (6)

John Sudano [10, 11, 12], had developed transformations which approximates quan-

tative belief mass m by subjective probabilities viz. Transformation Proportional to

Plausibility, Transformation Proportional to Normalized Plausibility, Transformation

Proportional to all Plausibilities, Hybrid Pignistic Probability and Probability Informa-

tion Content. In [3], Cuzzolin developed transformation CuzzP (.) for any finite and

discrete frame of discernment Θ n ≥ 2, satisfying Shafer’s model as

CuzzP (θi) = m(θi) +
4(θi)∑n
j=14(θj)

× TNSM (7)
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with 4(θi) = Pl(θi)−m(θi) and

TNSM = 1−
n∑
j=1

m(θj) =
∑

A∈2Θ,|A|>1

m(A). (8)

Shannon [8] developed transformation discrete probability measure H(.) for discrete

frame of discernment Θ by

H(P ) = −
n∑
i=1

P ({θi})log2P ({θi}) (9)

Normalized Shannon entropy is dual of PIC metric.

We have some results about interval arithmatic from Moore‘s book [6] as:

Let X = [X,X] and Y = [Y , Y ] be any intervals, in set of real numbers. Here X =

min.{x : x ∈ X} and X = max.{x : x ∈ X}. Therefore X and X are lower and upper

limits of X respectively. The computations with intervals are as:

X + Y = [X + Y ,X + Y ] (10)

X − Y = [X − Y ,X − Y ] (11)

X · Y = [MinS,MaxS], Where S = {XY ,XY ,XY ,XY }. (12)

X/Y =



[X/Y ,∞] if X ≤ 0 and Y = 0

[−∞, X/Y ] ∪ [X/Y ,∞] if X ≤ 0 and Y < 0 < Y

[−∞, X/Y ] if X ≤ 0 and Y = 0

[−∞,∞] if X < 0 < X

[−∞, X/Y ] if X ≥ 0 and Y = 0

[−∞, X/Y ] ∪ [X/Y ,∞] if X ≥ 0 and Y < 0 < Y

[X/Y ] if X ≥ 0 and Y = 0

(13)

Also f(X) = {f(x) : x ∈ X}. It is always beneficial to work on separate intervals

instead of their unions and draw conclusions.

The necessary information about probability mass function, distribution function,

raw moments, central moments and coefficients of skewness and kurtosis, is refered from

Bansi Lal and Sanjay Arora book [1].
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3. New Consonant Basic Belief Assignment

Let p(x) and P (X ≤ x) be probability density function and distribution function of

probability distribution under study respectively. We know that differentiation of dis-

tribution function P (X ≤ x), is a probability density function p(x). If some subset

A = {ai, aj , ak} of Θ = {a1, a2, . . . , an} is of our interest. WOLOG, assume that

A is subset of Θ and whose probability is distribution function for some x = s i.e

p(A) = P (X ≤ s). Here we have to concentrate on important condition that i, j and

k are in some order i.e. starting values of X is i, all are in some order and all are less

than n. If this condition is not satisfied then we have to search for another probability

distribution in which i, j and k are successive in some order. Therefore firstly the subset

A should be chosen and according to order of occurrence of it‘s elements, we have to

search for probability distribution in which i, j and k are in some order.

For consonant bba, it‘s focal elements are nested. Without loss of generality, we assume

following embedding of focal elements satisfy our requirement :

{a1} ⊆ {a1, a2} ⊆ {a1, a2, a3} ⊆ · · · ⊆ {a1, a2, . . . , ar} ⊆ {a1, a2, . . . , an} = Θ (14)

We have transformation for consonant bba,

m(A) =
p(A)

K
, (15)

where K = n∗p({a1})+(n−1)∗p({a2})+(n−2)∗p({a3})+· · ·+2∗p({an−1})+p({an}).
Note that m(∅) = 0 as p(∅) = 0. Also

∑
A⊆Θ

A =
p({a1}) + p({a1, a2}) + p({a1, a2, a3}) + · · ·+ p({a1, a2, . . . , an})

K

=
K

K
= 1.

Therefore m defined as above is a consonant basic belief assignment . We have following

functions related to this basic belief assignment as:

3.1 Belief Function

If |A| = r and |Θ| = n then number of subsets of A containing {a1} are r, containing

{a1, a2} are r − 1, containing {a1, a2, a3} are r − 2, . . . , containing {a1, a2, . . . , ak} are

r− (k+ 1), . . . , containing {a1, a2, . . . , ar−1} are 2, containing {a1, a2, . . . , ar} is 1. The
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belief function of set A = {a1, a2, . . . , ar} is

Bel(A) =
∑
B⊆A

m(B)

= m({a1}) +m({a1, a2}) +m({a1, a2, a3}) + · · ·+m({a1, a2, . . . , ar})

=
1

K

r−1∑
{ai}∈A;
i=0

(r − i)p({ai+1})

(16)

3.2 Commonality Function

If |A| = r and |Θ| = n, then the number of subsets of Θ containing A are such that

A = {a1, a2, . . . , ar} is contained in n− r + 1 subsets of Θ

{a1, a2, . . . , ar, ar+1} is contained in n− r subsets of Θ

{a1, a2, . . . , ar, ar+1, ar+2} is contained in n− r subsets of Θ
...

{a1, a2, . . . , ar, ar+1, . . . , an−1} is contained in 2 subsets of Θ

{a1, a2, . . . , ar, ar+1, . . . , an−1, an} is contained in 1 ( i.e. only one subset Θ ) subset of

Θ.

From result : p({a1, a2, . . . , ar}) = p({a1}) +p({a2}) + · · ·+p({ar}) since singletons

have empty intersections. By applying this result to embedding given above, we get

{a1}, {a2}, . . . , {ar} are repeated n− (r − 1) times.

{ar+1} is repeated n− r times.

{ar+2} is repeated n− (r + 1) times.

{ar+3} is repeated n− (r + 2) times.
...

{an−1} is repeated 2 times.

{an} is repeated only one time.

Therefore formula for commonality function becomes,

Q(A) =
∑
B⊇A

m(B)

= m({a1, a2, . . . , ar}) +m({a1, a2, . . . , ar, ar+1}) +m({a1, a2, . . . , ar, ar+1, ar+2})

+ · · ·+m({a1, a2, . . . , ar, ar+1, ar+2, . . . , an})
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=
1

K
{(n− (r − 1))

r∑
{ai}∈A,i=1

p({ai}) +

n∑
{ai}6∈A,
i=r+1

(n− i− 1)p({ai})} (17)

3.3 Plausibility Function

By embedding considered above, we observe that : for any subset A, subsets of Θ are

either subsets of A or supersets of A therefore they have non-empty intersections i.e.

for any two subsets of Θ, except ∅, have non-empty intersections hence every subsets

of Θ, except ∅, have non-empty intersection with A. Therefore formula for plausibility

function becomes

Pl(A) = m({a1}) +m({a1, a2}) +m({a1, a2, a3}) + · · ·+m({a1, a2, a3, . . . , an})

= 1.
(18)

4. Lower and Upper Limits of Moments

In this section, we calculate upper and lower limits of raw and central moments based

on probability of set, using (3) : belief and plausibility functions are lower and upper

limits of probability respectively.

4.1 Raw moments based on probability of set

Here we use p(v) = p(Av) = p({a1, a2, . . . , av}), v = 1, 2, . . . , n and p(0) = p(∅) = 0.

Therefore we get rth ordered raw moments based on probability of set as:

µ”
r =

n∑
v=0

vrP (v)

= 0rp(0) + 1rp(1) + 2rp(2) + · · ·+ nrp(n)

= (1r + 2r + 3r + · · ·+ nr)p({a1}) + (2r + 3r + 4r + · · ·+ nr)p({a2})

+ · · ·+ ((n− 1)r + nr)p({an−1}) + nrp({an})

(19)

4.2 Raw Moments based on Belief of set

As belief function is lower limit of probability, we replace probability of set by belief

function of set. Therefore we get lower limit of rth ordered raw moments based on
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probability of set as:

µ”
r

=

n∑
v=0

V rBel(v)

=
n∑
v=1

V rBel(v) Since Bel(0) = Bel(∅) = 0

=
1

K
[(1r + 2r + 3r + · · ·+ nr)p(A1) + (2r + 3r + · · ·+ nr)p(A2)

+ · · ·+ ((n− 1)r + nr)p(An−1) + nrp(An)]

=
1

K

n−1∑
u=0

{
n−1∑
i=u

{
n∑
j=0

jr −
i∑

j=0

jr}}p(Ai+1)

(20)

4.3 Raw Moment based on Plausibility of set

As Plausibility function is upper limit of probability, we replace probability of set by

belief function of set. Therefore we get upper limit of rth ordered raw moments based

on probability of set by (2) as:

µ”
r =

n∑
v=0

V rPl(v)

=
n∑
v=1

V rPl(v) Since Pl(0) = Pl(∅) = 0

=

n∑
v=1

V r

(21)

4.4 Proper Magnification or Reduction of Upper and Lower Limits of Raw

Moments

We have obtained lower and upper limits of raw moments based on probability of set.

These moments are magnified or reduced by dividing corresponding raw moments based

on probability of set and multiplying corresponding raw moments from concerned prob-

ability distribution. i.e.

µ”
r
· µ′r
µ”
r

≤ µ′r ≤
µ”
r · µ

′
r

µ”
r

µ
′

r
≤ µ′r ≤ µ

′
r

(22)

where µ
′
r = corresponding rth raw moment of concerned probability distribution [1, 2].
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Central Moments

In [1,2], we have central moments of probability distribution as:

µ1 = 0

µ2 = µ
′
2 − (µ

′
1)

2

µ3 = µ
′
3 − 3µ

′
2µ
′
1 + 2(µ

′
1)

3

µ4 = µ
′
4 − 4µ

′
3µ
′
1 + 6µ

′
2µ
′
1

2
− 3(µ

′
1)

4

(23)

Using interval arithmetic [6], raw moments (16) and corresponding lower and upper

raw moments based on belief of set (17) and plausibility of set (18) respectively, we

obtain lower and upper limits of central moments by replacing intervals consisting of

corresponding lower or upper limits of raw moments of probability distribution as:

Lower and Upper Limits of Central Moments :-

For first central moment, we have

µ1 = 0

= µ
′
1 − µ

′
1

= [µ
′

1
, µ
′
1]− [µ

′

1
, µ
′
1]

= [µ
′

1
− µ′1, µ

′
1 − µ

′

1
].

(24)

For second central moment, we have

µ2 = µ
′
2 − µ

′
1

2

= [µ
′

2
, µ
′
2]− [µ

′

1
, µ
′
1]

2

= [µ
′

2
− µ′1

2
, µ
′
2 − µ

′

1

2
].

(25)

For third central moment, we have

µ3 = µ
′
3 − 3(µ

′
2)(µ

′
1) + 2µ

′
1

2

= [µ
′

3
, µ
′
3]− 3[µ

′

2
, µ
′
2][µ

′

1
, µ
′
1] + 2[µ

′

1
, µ
′
1]

3

= [µ
′

3
− 3(µ

′
2)(µ

′
1) + 2µ

′

1

3
, µ
′
3 − 3(µ

′

2
)(µ

′

1
) + 2µ

′
1

3
].

(26)
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For fourth central moment, we have

µ4 = µ
′
4 − 4(µ

′
3)(µ

′
1) + 6(µ

′
2)(µ

′
1)

2
− 3µ

′
1

4

= [µ
′

4
, µ
′
4]− 4[µ

′

3
, µ
′
3][µ

′

1
, µ
′
1]

+ 6[µ
′

2
, µ
′
2][µ

′

1
, µ
′
1]

2
− 3[µ

′

1
, µ
′
1]

4

= [µ
′

4
− 4µ

′
3µ
′
1 + 6µ

′

2
µ
′

1

2
− 3µ

′
1

4
,

µ
′
4 − 4µ

′

3
µ
′

1
+ 6µ

′
2µ
′
1

2
− 3µ

′

1

4
].

(27)

4.5 Coefficients of Skewness and Kurtosis

Using interval arithmetic [6] and lower and upper limits of central moments (21), (22),

(23) and (24), we obtain lower and upper limits of coefficient of skewness and kurtosis

as:

The Coefficient of Skewness = β1 =
µ3

2

µ2
3

=
[µ

3
, µ3]2

[µ
2
, µ2]3

=
[0, µ3

2]

[µ
2

3, µ2
3]

The Coefficient of Kurtosis = β2 =
µ4

µ2
2

=
[µ

4
, µ4]

[µ
2
, µ2]2

=
[µ

4
, µ4]

[0, µ2
2]

(28)

Remark :- Here we have obtained the lower and upper limits of central moments and

hence lower and upper limits of coefficients of skewness and kurtosis. We observe that

values of central moments and coefficients of skewness and kurtosis from probability

distribution always lie between lower and upper limits of central moments and lower

and upper limits of coefficients of skewness and kurtosis. For the value of coefficient of

kurtosis γ2 = β2−3, we reduce the quantity β2 by quantity 3. But in this generalization

i.e. replacing a real number by suitable interval, we do not have any idea about quan-

tity that should be replaced by quatity 3. Therefore we are unable to conclude about

coefficient of kurtosis with values β2 and γ2.
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5. Illustrative Example

Let X ∼ Binomial(n, p). therefore p(x) =
(
n
p

)
pxqn−x. Now we connsider n = 4, p = 2/3

and q = 1− p = 1/3. The distribution of X is

X : 0 1 2 3 4 Total

p(x) : 1/81 8/81 24/81 32/81 16/81 1

For consonant bba, focal elements have embedding as :

∅ ⊆ {0} ⊆ {0, 1} ⊆ {0, 1, 2} ⊆ {0, 1, 2, 3} ⊆ {0, 1, 2, 3, 4} (29)

Now we will calculate probability, basic belief assignment, belief, commonality and

plausibility of subsets of X and represent in following table.
Subset Prob(·) m(·) Bel(·) q(·) Pl(·)
A0 = ∅ 0 0 0 1=189/189 0
A1 = {0} 1/81 1/189 1/189 1=189/189 1
A2 = {0, 1} 9/81 9/189 10/189 188/189 1
A3 = {0, 1, 2} 33/81 33/189 43/189 179/189 1
A4 = {0, 1, 2, 3} 65/81 65/189 108/189 146/189 1
A5 = {0, 1, 2, 3, 4} 81/81=1 81/189 189/189=1 81/189 1∑

189/81 1 351/189 783/189 5
From above table, we get lower and upper limits of distribution function of given

probability distribution as belief and plausibility functions respectively, as Bel(Av) ≤
p(Av) ≤ Pl(v), v = 0, 1, 2, 3, 4, 5 including the case of subset ∅.

Now we use notation p(v) = p(Av) = p({0, 1, 2, 3, . . . , v − 1}) v = 0, 1, 2, 3, 4, 5.

Raw Moments based on Probability, belief and plausibility of set

The rth ordered raw moment based on probability of set is denoted by µ
′′
r and is given

by µ
′′
r =

∑5
v=0 v

rp(v). Now we calculate first four raw moments based on probability of

set by using values from above table p(·) viz. µ
′′
1 , µ

′′
2 , µ

′′
3 and µ

′′
4 .

µ”
1 =

5∑
v=0

vp(v)

= 0p(0) + 1p(1) + 2p(2) + 3p(3) + 4p(4) + 5p(5) = 783/81.

(30)

µ”
2 =

5∑
v=0

v2p(v)

= 02p(0) + 12p(1) + 22p(2) + 32p(3) + 42p(4) + 52p(5) = 3381/81.

(31)
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µ”
3 =

5∑
v=0

v3p(v)

= 03p(0) + 13p(1) + 23p(2) + 33p(3) + 43p(4) + 53p(5) = 15249/81.

(32)

µ”
4 =

5∑
v=0

v4p(v)

= 04p(0) + 14p(1) + 24p(2) + 34p(3) + 44p(4) + 54p(5)

= 0 · 0 + 1(1/81) + 16(9/81) + 81(33/81) + 256(65/81) + 625(81/81)

= 70083/81.

(33)

Raw Moments based on Belief of set :-

The rth ordered raw moment based on belief of set is denoted by µ
′′

r
and is given by

µ
′′

r
=
∑5

v=0 v
rBel(v). Now we calculate first four raw moments based on belief of set

by using values from above table Bel(·) viz. µ
′′

1
, µ
′′

2
, µ
′′

3
and µ

′′

4
.

µ”
1

=

5∑
v=0

vBel(v)

= 0Bel(0) + 1Bel(1) + 2Bel(2) + 3Bel(3) + 4Bel(4) + 5Bel(5) = 1527/189.

(34)

µ”
2

=

5∑
v=0

v2Bel(v)

= 02Bel(0) + 12Bel(1) + 22Bel(2) + 32Bel(3) + 42Bel(4) + 52Bel(5) = 6881/189.

(35)

µ”
3

=
5∑
v=0

v3Bel(v)

= 03Bel(0) + 13Bel(1) + 23Bel(2) + 33Bel(3) + 43Bel(4) + 53Bel(5) = 31779/189.

(36)

µ”
4

=
5∑
v=0

v4Bel(v)

= 04Bel(0) + 14Bel(1) + 24Bel(2) + 34Bel(3) + 44Bel(4) + 54Bel(5) = 149417/189.

(37)
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Raw Moments based on Plausibility of set :-

The rth ordered raw moment based on plausibility of set is denoted by µ
′′
r and is given

by µ
′′
r =

∑5
v=0 v

rPl(v). Now we calculate first four raw moments based on plausibility

of set by using values from above table Pl(·) viz. µ
′′
1 , µ

′′
2 , µ

′′
3 and µ

′′
4 .

µ”
1 =

5∑
v=0

vP l(v)

= 0Pl(0) + 1Pl(1) + 2Pl(2) + 3Pl(3) + 4Pl(4) + 5Pl(5) = 15.

(38)

µ”
2 =

5∑
v=0

v2Pl(v)

= 02Pl(0) + 12Pl(1) + 22Pl(2) + 32Pl(3) + 42Pl(4) + 52Pl(5) = 55.

(39)

µ”
3 =

5∑
v=0

v3Pl(v)

= 03Pl(0) + 13Pl(1) + 23Pl(2) + 33Pl(3) + 43Pl(4) + 53Pl(5) = 225.

(40)

µ”
4 =

5∑
v=0

v4Pl(v)

= 04Pl(0) + 14Pl(1) + 24Pl(2) + 34Pl(3) + 44Pl(4) + 54Pl(5) = 979.

(41)

Lower and Upper limits of Raw Moments :-

By using (31)-(38) and interval arithmetic (7)-(10), we obtain lower and upper limits of

raw moments,

µ”
1

µ”
1

µ
′
1 ≤ µ

′
1 ≤

µ”
1

µ”
1

µ
′
1

2.2288 ≤ 2.6667 ≤ 4.1379

µ
′

1
≤ µ′1 ≤ µ

′
1.

(42)

µ”
2

µ”
2

µ
′
2 ≤ µ

′
2 ≤

µ”
2

µ”
2

µ
′
2

µ
′

2
≤ µ′2 ≤ µ

′
2.

(43)
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µ
′′

3

µ
′′
3

µ
′
3 ≤ µ

′
3 ≤

µ
′′
3

µ
′′
3

µ
′
3

23.0233 ≤ 25.7778 ≤ 30.8086

µ
′

3
≤ µ′3 ≤ µ

′
3.

(44)

µ
′′

4

µ
′′
4

µ
′
4 ≤ µ

′
4 ≤

µ
′′
4

µ
′′
4

µ
′
4

79.8654 ≤ 87.4074 ≤ 98.9016

µ
′

4
≤ µ′4 ≤ µ

′
4.

(45)

5.6 Central moments of probability Distribution

By using formulae to calculate central moments of distribution [1, 2], we have

µ1 = 0.

µ2 = µ
′
2 − µ

′
1

2
= 0.8889.

(46)

µ3 = µ
′
3 − 3µ

′
2µ
′
1 + 2µ

′
1

3
= 0.2963. (47)

µ4 = µ
′
4 − 4µ

′
3µ
′
1 + 6µ

′
2µ
′
1

2
− 3µ

′
1

4

= 2.0741
(48)

Lower and Upper Limits of Central Moments :- By using lower and upper limits

of raw moments (39)-(42) and interval arithmetic (7)-(10), we obtain lower and upper

limits of central moments as

µ1 = [µ
′

1
− µ′1, µ

′
1 − µ

′

1
]

= [−1.9091, 1.9091]

= [µ
1
, µ1].

(49)

µ2 = [µ
′

2
− µ′1

2
, µ
′
2 − µ

′

1

2
]

= [−10.1813, 5.5779]

= [µ
2
, µ2].

(50)
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µ3 = [µ
′

3
− 3(µ

′
2)(µ

′
1) + 2µ

′

1

3
, µ
′
3 − 3(µ

′
2)(µ

′

1
) + 2µ

′
1

3
]

= [−84.9960, 128.0991]

= [µ
3
, µ3].

(51)

µ4 = [µ
′

4
− 4µ

′
3µ
′
1 + 6µ

′

2
µ
′

1

2
− 3µ

′
1

4
,

µ
′
4 − 4µ

′

3
µ
′

1
+ 6µ

′
2µ
′
1

2
− 3µ

′

1

4
]

= [−1102.7015, 896.8144]

= [µ
4
, µ4].

(52)

Lower and upper Limits of Coefficients of Skewness and Kurtosis

By using lower and upper limits of central moments (46)-(49) and interval arithmetic

(7)-(10), we have coefficient of skewness and kurtosis as,

Coefficient of Skewness = β1 =
µ2

3

µ3
2

= −0.124998. (53)

Therefore given distribution is negatively skewed as value of µ3 is negative and it‘s sign

is given to β1 .

Coefficient of Kurtosis = β2 =
µ4

µ2
2

= 2.624967. (54)

Since value of coefficient of kurtosis β2 is less than 3, the given distribution is platykurtic.

Coefficient of Skewness = β1 =
[0, µ3

2]

[µ
2

3, µ2
3]

= [−∞, 0/(−1055.3822)] ∪ [0/(173.5450),∞]

= [−∞, 0] ∪ [0,∞]

= [−∞,∞]

= [β
1
, β1].

(55)
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Coefficient of Kurtosis = β2 =
[µ

4
, µ4]

[0, µ2
2]

=
[−1102.7015, 896.8144]

[0, (5.5779)2]

=
[−1102.7015, 896.8144]

[0, 31.11297]

= [−∞, 896.8144/31.11297]

= [−∞, 28.8244]

= [β
2
, β2].

(56)

Remark:-

We know that sign of coefficient of skewness is dependent of sign of µ3. From interval

for µ3, we can not conclude about sign of µ3. Therefore we can not conclude about

skewness of probability distribution. But we can have conclusion about given probability

distribution that value of coefficient of skewness definitely lie in interval for coefficient

of skewness.

As we do not have any idea about the quantity which corresponds to quantity 3 (which is

used in statistics for conclusion about skewness) and suitably replaces quantity 3. Sim-

ilar to coefficient of skewness, value of coefficient of kurtosis of probability distribution

definitely lie in interval for coefficient of kurtosis.

From above two conclusions, we say that end points of intervals obtained for coefficients

skewness and kurtosis represents lower and upper limits of coefficients of skewness and

kurtosis. Similarly, from intervals corresponding to raw moments and central moments,

the end points of respective intervals are lower and upper limits of respective raw and

central moments.

6. Conclusion

In this paper, we have defined new consonant basic belief assignment and its related

functions. Here lower and upper limits of statistical quantities viz. distribution func-

tion, raw moments, central moments and coefficients of skewness and kurtosis, are too

much wider i.e. extreme but do not contradict statistical conclusions. The main aim of

such calculations is : instead of single value, we should always prefer interval in which

this value lies.
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