
International J. of Pure & Engg. Mathematics (IJPEM)

ISSN 2348-3881, Vol. 5 No. III (December, 2017), pp. 77-85

FIXED POINT TECHNIQUE FOR SOLVING A GENERALIZED

SET-VALUED IMPLICIT QUASI-VARIATIONAL INEQUALITY

PROBLEM

FAIZAN A. KHAN1 AND FAHAD M. ALHARBI2
1,2 Department of Mathematics, Faculty of Science,

University of Tabuk, Tabuk-71491, Kingdom of Saudia Arabia

Abstract

In this paper, we consider a generalized set-valued implicit quasi-variational inequal-
ity problem (GSIQVIP) in real uiniformly smooth Banach space. Using set-valued
version of Boyd-Wong fixed point theorem [3], we prove the existence of solution for
GSIQVIP. By exploiting the method of this paper, one can generalize and improve
many known results in the literature.

1. Introduction

In 1973, Benssousan et al. [2] introduced a new class of variational inequalities known

as quasi-variational inequalities arising in the study of optimization, economics and
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impulse control theory. In the variational inequality formulation, the underlying convex

set K does not depend upon the solution. In many important applications, the convex

set K depends implicitly on the solution. In this case, variational inequality is known

as quasi-variational inequality, see for the details [1, 2, 5, 6, 10-12].

The results concerning for solving monotone set-valued variational inequalities estab-

lished by many authors are actually for single-valued variational inequalities inspite of

involving set-valued mappings. Therefore, such methods used for studying the existence

of solutions for set-valued variational inequalities need improvement. In 1999, Noor [11]

considered a class of quasi-variational inequalities involving set-valued mappings with

compact values in Hilbert space which is called the set-valued implicit quasi-variational

inequalities. Using fixed point technique and projection method, he studied the exis-

tence of solution for a class of set-valued implicit quasi-variational inequalities.

Recently, many authors given in [1, 6, 8, 10-13] studied existence of solutions for some

classes of variational inequalities involving single-valued and set-valued mappings in

Banach spaces using some improved techniques. Therefore, it is an interesting problem

to generalize and improve the techniques developed by some authors given in [1, 6,

8, 10-12] to study the set-valued implicit quasi-variational inequality problem in real

uniformly smooth Banach space under some weak conditions.

Inspired by recent research work in this direction, we consider a generalized set-

valued implicit quasi-variational inequality problem (GSIQVIP) in real uniformly smooth

Banach space. Using set-valued version of Boyd-Wong fixed point theorem [3], we prove

the existence of solution for GSIQVIP.

2. Preliminaries

Let E be a real Banach space equipped with norm ‖·‖; E∗ be the topological dual space

of E; 〈·, ·〉 be the dual pair between E and E∗; CB(E) be the family of all nonempty,

closed and bounded subsets of E. Let H(·, ·) be the Hausdorff metric on CB(E) defined

by

H(A,B) = max
{

sup
x∈A

inf
y∈B

d(x, y), sup
y∈B

inf
x∈A

d(x, y)
}

; A,B ∈ CB(E);

and J : E → 2E
∗

be the normalized duality mapping defined by

J(x) = {f ∈ E∗ : 〈x, f〉 = ‖x‖2, ‖x‖ = ‖f‖}, ∀x ∈ E.
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First, we recall and define the following known concepts and results.

Definition 2.1 [4, 7, 13] : A Banach space E is called smooth if for every x ∈ E

with ‖x‖ = 1, there exists a unique f ∈ E∗ such that ‖f‖ = f(x) = 1. The modulus of

smoothness of E is the function ρE : [0,∞)→ [0,∞), defined by

ρE(τ) = sup
{(‖x+ y‖+ ‖x− y‖)

2
− 1 : x, y ∈ E, ‖x‖ = 1, ‖y‖ = τ

}
.

Definition 2. 2 [4] : The space E is said to be uniformly smooth if, limτ→0
ρE(τ)
τ = 0.

Remark 2.1 [4] : We note that if E is smooth then the normalized duality mapping

J is single-valued and if E ≡ H, a Hilbert space, then J becomes identity.

Lemma 2.1 [4, 7, 13] : Let E be an uniformly smooth Banach space and let J : E →
E∗ be the normalized duality mapping. Then for all x, y ∈ E, we have

(i) ‖x+ y‖2 ≤ ‖x‖2 + 2〈y, J(x+ y)〉;

(ii) 〈x− y, J(x)− J(y)〉 ≤ 2d2ρE(4‖x− y‖/d), where d =
√

(‖x‖2 + ‖y‖2)/2.

Definition 2.3 [9-12] : A set-valued mapping T : E → CB(E) is said to be µ-H-

Lipschitz continuous if there exists a constant µ > 0 such that

H(T (x), T (y)) ≤ µ‖x− y‖, ∀x, y ∈ E,

where H(·, ·) is the Hausdorff metric on CB(E).

Theorem 2.1 [9-12] :

(i) Let T : E → CB(E) be a set-valued mapping on E. Then for any given ε > 0 and

for any x, y ∈ E and u ∈ T (x), there exists v ∈ T (y) such that

‖u− v‖ ≤ (1 + ε)H(T (x), T (y));

(ii) If T : E → C(E), then above inequality holds for ε = 0.

Definition 2.4 [1,7] : Let K be a nonempty, closed and convex subset of uniformly

smooth Banach space E. A mapping RK : E → K is said to be:

(i) retraction if R2
K = RK ;

(ii) nonexpansive retraction if RK(x)−RK(y)‖ ≤ ‖x− y‖, ∀x, y ∈ E;
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(iii) sunny retraction if RK(RK(x)− t(x−RK(x))) = RK(x), ∀x ∈ E, t ∈ R.

Theorem 2.2 [1,7] : Let E be a uniformly smooth Banach space and let J : E → E∗

be the normalized duality mapping. Then RK is sunny nonexpansive retraction if and

only if for all x, y ∈ E, we have

〈x−RK(x), J(RK(x)− y)〉 ≥ 0. (2.1)

Definition 2.5 [3,9] : Let F : X → X be a mapping; X is a metric space with metric

d(·, ·); P := {d(x, y) : x, y ∈ X} and let P̄ denote the closure of P . Then:

(i) A point x ∈ X is said to be fixed point of F if F (x) = x;

(ii) F is said to be contraction if d(F (x), F (y)) ≤ αd(x, y), ∀x, y ∈ X, for some

α, 0 ≤ α < 1. Further, if α = 1, then F is called nonexpansive.

Theorem 2.3 [3,9] : (Banach Contraction Principle). Every contraction mapping

F defined on a complete metric space X has a unique fixed point.

Definition 2.6 [3, 13] : A metric space X is said to be metrically convex if for each

x, y ∈ X with x 6= y, there is a z ∈ X, x 6= z 6= y such that d(x, y) = d(x, z) + d(z, y).

Theorem 2.4 [3, 6] : Let X be a complete metrically convex metric space. If, for the

set-valued mapping F : X → 2X , there is a mapping ψ : P → R+ satisfying

(i) D(Fx, Fy) ≤ ψ(d(x, y)), ∀x, y ∈ X, where D(., .) is a metric on 2X , defined as

D(A,B) = sup{d(x, y) : x ∈ A, y ∈ B}, ∀A,B ∈ 2X ;

(ii) ψ(t) < t, ∀t ∈ P̄ \ {0}.

Then F has a fixed-point and for any x0 ∈ X, xn ∈ F (xn−1), n ≥ 1, {xn} converges to

a fixed point of F in X.

3. Generalized Set-Valued Implicit Quasi-Variational Inequality Prob-

lem

From now onwards, unless otherwise stated, we assume that E is a real uniformly smooth

Banach space.

Let g : E → E be a single-valued mapping and T,A, S : E → CB(E) be three set-

valued mappings. Let N : E × E × E → E be a nonlinear single-valued mapping and
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K : E → 2E be a set-valued mapping such that for any x ∈ E, K(x) is a nonempty,

closed and convex set in E, then we consider the following generalized set-valued implicit

quasi-variational inequality problem (for short, GSIQVIP):

Find x ∈ E, u ∈ T (x), v ∈ A(x), w ∈ S(x) such that g(x) ∈ K(x) and

〈g(x) +N(u, v, w), J(y − g(x))〉 ≥ 0, ∀y ∈ K(x). (3.1)

We remark that for appropriate choices of mappings g,N, T,A, S,K, and the space E,

one can obtain many known classes of variational inequalities from GSIQVIP (3.1), see

for example [1, 6, 8, 10-13].

We need the following concepts and results which are needed in the sequel.

Definition 3.1 : Let T,A, S : E → CB(E). A mapping N : E ×E ×E → E is said to

be:

(i) α-strongly accretive with respect to T , A and S if there exists a constant α > 0

such that

〈N(u1, v1, w1)−N(u2, v2, w2), J(x1−x2)〉 ≥ α‖x1−x2‖2,

∀x1, x2 ∈ E, u1 ∈ T (x1), v1 ∈ A(x1), w1 ∈ S(x1), u2 ∈ T (x2), v2 ∈ A(x2), w2 ∈ S(x2);

(ii) (β, γ, ξ)-mixed Lipschitz continuous if there exist constants β, γ, ξ > 0 such that

‖N(x1, y1, z1)−N(x2, y2, z2)‖ ≤ β‖x1 − x2‖+ γ‖y1 − y2‖+ ξ‖z1 − z2‖,

∀x1, x2, y1, y2, z1, z2 ∈ E.

Remark 3.1 : The concept of α-strongly accretiveness with respect to T A and S

and (β, γ, ξ)-mixed Lipschitz continuity of mapping N(·, ·, ·) are more general than the

concepts used in [1,6,8,10-13]. If T is µ-H-Lipschitz continuous then α ≤ βµ.

Assumption 3.1 : For all x, y, z ∈ E, the retraction mapping RK(x) from E → K(x)

satisfies the condition:

‖RK(x)(z)−RK(y)(z)‖ ≤ ν‖x− y‖, ν > 0 is a constant.
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4. Main Results

The following lemma, which will be used in the sequel, is an equivalence between the

solutions of GSIQVIP (3.1) and a fixed point problem.

Lemma 4.1 : GSIQVIP (3.1) has a solution (x, u, v, w) with x ∈ E, u ∈ T (x), v ∈ A(x),

w ∈ S(x), g(x) ∈ K(x) if and only if the set-valued mapping F : E → 2E defined by

F (x) =
⋃

u∈T (x)

⋃
v∈A(x)

⋃
w∈S(x)

{
x−g(x)+RK(x)[(1−ρ)g(x)−ρN(u, v, w)]

}
, x ∈ E, (4.1)

has a fixed point x ∈ E, where ρ > 0 is a constant.

Proof : (x, u, v, w) with x ∈ E, u ∈ T (x), v ∈ A(x), w ∈ S(x), g(x) ∈ K(x) is a

solution of GSIQVIP (3.1) if and only if (x, u, v, w) satisfies

〈g(x) +N(u, v, w), J(y − g(x))〉 ≥ 0, ∀y ∈ K(x)

⇐⇒ 〈g(x)− [(1− ρ)g(x)− ρN(u, v, w)], J(y − g(x))〉 ≥ 0, ∀y ∈ K(x), ρ > 0

⇐⇒ g(x) = RK(x) [(1− ρ)g(x)− ρN(u, v, w)] , (By Theorem 2.2)

⇐⇒ x = x−g(x)+RK(x) [(1− ρ)g(x)− ρN(u, v, w)]

⇐⇒ x ∈
⋃

u∈T (x)

⋃
v∈A(x)

⋃
w∈S(x)

[
x− g(x) +RK(x)[(1− ρ)g(x)− ρN(u, v, w)]

]
= F (x).

Now, using Lemma 4.1, we prove the following existence theorem for GSIQVIP (3.1).

Theorem 4.1 : Let E be a real uniformly smooth Banach space with ρE(t) ≤ ct2 for

some c > 0; let the mapping g be σ-strongly accretive and δ-Lipschitz continuous; let the

mappings T,A, S : E → CB(E) be µ-H-Lipschitz continuous, η-H-Lipschitz continuous

and λ-H-Lipschitz continuous, respectively; let the mapping N be α-strongly accretive

with respect to T , A and S and (β, γ, ξ)-mixed Lipschitz continuous. If Assumption 3.1

holds and there exists a constant ρ > 0 such that∣∣∣∣ρ− α− (1− k)δ

64cπ2 − δ2

∣∣∣∣ <
√

(α− (1− k)δ)2 − k(2− k)(64cπ2 − δ2)
64cπ2 − δ2

(4.2)

α > (1− k)δ +
√
k(2− k)(64cπ2 − δ2); ρδ < 1− k; (4.3)

k := ν + 2
√

1− 2σ + 64cδ2; 8
√
cπ > δ; π := (1 + ε)(βµ+ γη + ξλ). (4.4)
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Then GSIQVIP (3.1) has a solution (x, u, v, w) with x ∈ E, u ∈ T (x), v ∈ A(x),

w ∈ S(x), g(x) ∈ K(x).

Proof : For applying Lemma 4.1, we need to show that function F defined by (4.1) has

a fixed point. Thus, for any x1, x2 ∈ E, p ∈ F (x1), q ∈ F (x2), there exist u1 ∈ T (x1),

v1 ∈ A(x1), w1 ∈ S(x1), u2 ∈ T (x2), v2 ∈ A(x2), w2 ∈ S(x2) such that

p = x1 − g(x1) +RK(x1)[(1− ρ)g(x1)− ρN(u1, v1, w1)]

and

q = x2 − g(x2) +RK(x2)[(1− ρ)g(x2)− ρN(u2, v2, w2)].

By using Assumption 3.1, we have

‖p−q‖ ≤ ‖x1−x2−(g(x1)−g(x2))‖+‖RK(x1)[(1−ρ)g(x1)−ρN(u1, v1, w1)]

−RK(x2)[(1− ρ)g(x2)− ρN(u2, v2, w2)]‖

≤ ‖x1 − x2 − (g(x1)− g(x2))‖+ ‖RK(x1)[(1− ρ)g(x1)− ρN(u1, v1, w1)]

−RK(x2)[(1−ρ)g(x1)−ρN(u1, v1, w1)]‖+‖RK(x2)[(1−ρ)g(x1)−ρN(u1, v1, w1)]

−RK(x2)[(1− ρ)g(x2)− ρN(u2, v2, w2)]‖

≤ ‖x1 − x2 − (g(x1)− g(x2))‖+ ν‖x1 − x2‖+ ‖[(1− ρ)g(x1)− ρN(u1, v1, w1)]

−[(1− ρ)g(x2)− ρN(u2, v2, w2)]‖

≤ 2‖x1 − x2 − (g(x1)− g(x2))‖+ ν‖x1 − x2‖+ ρ‖g(x1)− g(x2)‖

+‖x1 − x2 − ρ[N(u1, v1, w1)−N(u2, v2, w2)]‖. (4.5)

Since g is σ-strongly accretive and δ-Lipschitz continuous, using Lemma 2.1, we have

‖x1−x2−(g(x1)−g(x2))‖2 ≤ ‖x1−x2‖2−2〈g(x1)−g(x2), J(x1−x2−(g(x1)−g(x2)))〉

≤ ‖x1 − x2‖2 − 2〈g(x1)− g(x2), J(x1 − x2)〉

− 2〈g(x1)− g(x2), J(x1 − x2 − (g(x1)− g(x2)))− J(x1 − x2)〉

≤ ‖x1 − x2‖2 − 2σ‖x1 − x2‖+ 64cδ2‖x1 − x2‖2

≤ (1− 2σ + 64cδ2)‖x1 − x2‖2. (4.6)
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Further, N is (β, γ, ξ)-mixed Lipschitz continuous and T,A, S are µ-H-Lipschitz con-

tinuous, η-H-Lipschitz continuous and λ-H-Lipschitz continuous, respectively, we have

‖N(u1, v1, w1)−N(u2, v2, w2)‖ ≤ β‖u1−u2‖+γ‖v1−v2‖+ξ‖w1−w2‖

≤ (1 + ε)(βH(T (x1), T (x2)) + γH(A(x1), A(x2)) + ξH(S(x1), S(x2)))

≤ (1 + ε)(βµ+ γη + ξλ)‖x1 − x2‖. (4.7)

Furthermore, N is α-strongly accretive with respect to T , A and S, then by using

Lemma 2.1 and (4.7), we have

‖x1−x2−ρ[N(u1, v1, w1)−N(u2, v2, w2)]‖2

≤ ‖x1−x2‖2−2ρ〈N(u1, v1, w1)−N(u2, v2, w2), J(x1−x2−ρ[N(u1, v1, w1)−N(u2, v2, w2)])〉

≤ ‖x1−x2‖2−2ρ〈N(u1, v1, w1)−N(u2, v2, w2), J(x1−x2)〉

−2ρ〈N(u1, v1, w1)−N(u2, v2, w−2), J(x1−x2−ρ[N(u1, v1, w1)−N(u2, v2, w2)]−J(x1−x2)〉

≤ [1− 2ρα+ 64cρ2(1 + ε)2(βµ+ γη + ξλ)2] ‖x1 − x2‖2. (4.8)

Hence, from (4.5), (4.6) and (4.8), we get

D (F (x1), F (x2)) ≤ [2
√

1− 2σ + 64cδ2+ν+ρδ

+
√

1− 2ρα+ 64cρ2(1 + ε)2(βµ+ γη + ξλ)2 ] ‖x1 − x2‖

≤ ψ(‖x1 − x2‖), (4.9)

where ψ(t) = θt, θ = k + ρδ + l(ρ); t = ‖x1 − x2‖; k = ν + 2
√

1− 2σ + 64cδ2

and l(ρ) =
√

1− 2ρα+ 64cρ2(1 + ε)2(βµ+ γη + ξλ)2.

Now, we show that θ < 1. It is clear that l(ρ) assumes its minimum value for ρ̄ =
α

64c(1 + ε)2(βµ+ γη + ξλ)2
with l(ρ̄) =

√
1− α

64c(1 + ε)2(βµ+ γη + ξλ)2
. For ρ = ρ̄,

k + ρδ + l(ρ) < 1 implies ρδ < 1 − k. Thus, it follows that θ < 1 for all ρ satisfying

(4.2)-(4.4). Since Banach space is a metrically convex metric space and θ < 1, then

ψ(t) < t for each t ∈ [0,∞), and hence by Theorem 2.4, F has a fixed point x ∈ E.

This completes the proof with Lemma 4.1.

Remark 4.1 : It is clear that α ≤ βµ; σ ≤ δ. Further, θ < 1 and conditions

(4.2)-(4.4) of Theorem 4.1 hold for some suitable values of constants, for example

(α = 3, β = 4, γ = ξ = 1, µ = η = λ = δ = 1, σ = 0.5, ε = ν = ρ = 0.1).
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