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Abstract

We consider pricing formula for derivative contracts whose dynamics is described by
stochastic delayed differential equation (Sdde) with an exponential delay measure.
For the purpose of finding pricing formula for the given derivative contract, we
consider a term-structure model with a one-dimensional Brownian motion as the
only source of randomness.
An explicit formula for the European call option is derived. We use martingale
approach to derive such formulae.

1. Introduction

In this paper, we consider the problem of finding the fair(no-arbitrage) price, V (t) for

an interest rate derivative contract which pays the amount X at time t. The dynamic
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of the price of such contract is proposed to be a stochastic delay equation (Sdde). We

discuss the modern approach to the pricing of an interest rate derivative using the theory

of martingales to establish prices and hedging strategies. Such problem with different

type delay model is discussed in [1]. Consider an interest rate derivative (stock) whose

price at time t is given by stochastic process S(t) whose dynamics is a stochastic delay

differential equation:

dS(t) = µS(t− δ)S(t)dt+ (S(t)− λY (t))S(t)dW (t), t ∈ [0, T ],

S(t) = ϕ(t), t ∈ [−δ, 0]. (1.1)

on the filtered probability space (Ω, F, Ft, P ), t ∈ [0, T ].

µ.λ, δ are positive constants. W is a one-dimensional standard Brownian motion adapted

to (Ft)0≤t≤T

ϕ : Ω→ C([−δ, 0],R)

is F0-measurable with respect to the Borel σ-field of the space C([−δ, 0],R).

Y (t) =

∫ 0

−δ
eλSS(t+ s)ds.

Equation (1.1) has a pathwise unique solution S such that S(t) > 0 for all t ≥ 0 when-

ever ϕ(0) > 0. (see [1], Thm.1).

2. Pricing Formula

Let the price of the option under consideration S(t) satisfies the (Sdde) (1.1) and risk-

free cash account, B(t) satisfies the equation

dB(t) = r(t)B(t)dt, B(0) = 1 (2.1)

where r is the interest rate of return. Then the fair price, V (t) at any time t ∈ [0, T ] is

given by the formula

V (t) = EQ[X|F st ]e−
∫ T
t r(s)ds. (2.2)

We will discuss the proof of finding such fair price as well as the replicating portfolio.

We start first by discussing the proof of the following theorem.

Theorem 2.1 : There exists a measure Q equivalent to P with

V (t) = EQ[X|F st ]e−
∫ T
t r(s)ds.



PRICING FORMUA FOR DERIVATIVE CONTRACT... 13

Proof : We discuss the proof of Theorem 2.1 in the following steps:

Step (1) : Existence of an equivalent martingale measure:

We start as in [1]. Let Z(t) = S(t)
B(t) = S(t)e−

∫ t
0 r(s)ds, t ∈ [0, T ] price process of our

derivative contract. By the Ito’s formula

dZ(t) = 1
B(t)dS(t) + S(t)(−r(t)B(t))dt

= Z(t)[{µS(t− δ)− r(t)}]dt+ (S(t)− λY (t))dW (t).

(2.3)

Let

Ŝ(t) =

∫ t

0
{µS(u− δ)− r(u)}du+

∫ t

0
(S(t)− λY (t))dW (t).

Then

dZ(t) = Z(t)dŜ(t), 0 < t < T (2.4)

and

Ẑ(t) = φ(0) +

∫ t

0
Z(u)dŝ(u), t ∈ [0, T ]. (2.5)

Define the process

γ(u) =
(µS(u− δ)− r(u)

S(u)− λY (u)
, u ∈ [0, T ]

provided that (S(u)− λY (u)) is non-zero which implies that r(u) for 0 ≤ u ≤ T is well

defined.

By a backward conditioning argument as in [1], EP [uT ] = 1, where

uT = exp

{
−
∫ T

0

(µS(t− δ)− r(u))

(S(u)− λY (u))
dW (u)

}
−1

2

∫ T

0

∣∣∣∣(µS(t− δ)− r(u))

(S(u)− λY (u))

∣∣∣∣2 du
(see [1], Section 3). By the Girsanov’s theorem ([3], Thm. 5.5), the process

w̃(t) = w(t) +

∫ t

0
γ(u)du, t ∈ [0, T ]

is a standard wiener process under the probability measure Q and Q is defined by

dZ(t) = Z(t), (S(t)− λY (t))dW̃ t ∈ [0, T ].

This implies that the discounted price process Z(t) is a martingale under the equivalent

measure Q hence the market under consideration {B(t), S(t)} has no arbitrage property

([3], Thm. 7.1).
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Step (2): Completeness of the market {B(t), S(t)}, t ∈ [0, T ] need one to prove that

any contingent claim in this market is attainable to do so, let X be any contingent

claim, i.e., an integrable non-negative random variable.

Define the process

M(t) = EQ(B−1(T )X|FSt ) = EQ(B−1(T )X|F W̃t ), t ∈ [0, T ].

Then M(t), t ∈ [0, T ], is an (F W̃t ) − Q martingale. By the martingale representation

theorem ([3], Thm.9.4), there exists an (F W̃t ) predictable process g(t), t ∈ [0, T ], such

that ∫ T

0
g(u)2du <∞, a.s.

and

M(t) = EQ(B−1(T )X) +

∫ t

0
g(u)dW̃ (u), t ∈ [0,mT ].

Step (3) : Suppose that we employ the portfolio strategy which holds ψ1(t) units of

the stock S(t) and ψ2(t) units of cash account B(t) at time t. The value of this portfolio

for 0 ≤ t ≤ T is

V (t) := ψ1(t)S(t) + ψ2(t)B(t) = B(t)M(t)

and

dV (t) = B(t)dM(t) +M(t)dB(t) = ψ2(t)dB(t) + ψ1(t)dS(t), t ∈ [0, T ]

which means that the portfolio (ψ1(t), ψ2(t2)) is a self-financing. The value of the

portfolio at T , V (T ) = B(T )M(T ) = X. Hence the contingent claim X is attainable.

Thus the market {B(t), S(t) : t ∈ [0, T ]} has no arbitrage if the price of the X is

V (t) =
S(t)

B(T )
EQ(X|F st )

at which t ∈ [0, T ] a.s. see [2].

3. Application of Theorem 2.1

As an application of Theorem 2.1, consider the derivative contract to be a European

call option.
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Theorem 2.2 : Let V (t) be the fair price of a European call option with exercise price

K and maturity time T . Then for all t ∈ [T

del, T ], the fair price V (t) is

V (t) = S(t)Φ(B+(t))−KΦ(B−(t))e−
∫ T
t r(s)ds

where Φ(y) = 1√
2π

∫ y
−∞ e

−u
2

2 du, y ∈ R is the distribution function of the standard normal

law:

B±(t) = log
S(t)

K
+

∫ T
t (r(u)± 1

2(S(u)− λY (u))2du

(
∫ T
t (S(u)− λY (u))2du)

1
2

.

If T > δ and t < T − δ, then

V (t) = e
∫ t
0 r(s)dsEQ(H(S̃(T − δ),−1

2

∫ T

T−δ
(S(u)− λY (u))2du

∫ T

T−δ
(S(u)− λY (u))2du|Ft),

where H is given by

H(x,m, σ2) := xem+σ2

2 Φ(α1, (x,m, σ))−KΦ(α2(x,m, σ))e−
∫ T
0 r(s)ds

and

α1(x,m, σ) :=
1

σ

[
log
( x
K

)
+

∫ T

0
r(s)ds+m+ σ2

]

α2(x,m, σ) :=
1

σ

[
log
( x
K

)
+

∫ T

0
r(s)ds+m

]
here σ, x ∈ R+,m ∈ R. The replicating portfolio is

ψ1(t) = Φ(B+(t),Ψ2(t) = −KΦ(B−(t)e−
∫ T
t r(s)ds, t ∈ [T − δ, T ].

Remark : Since in one factor models for the term structure of interest rates in

continuous-time framework the free rate r(t) assumed to be a time homogeneous Markov

process

dr(t) = a(r(t))dt+ b(r(t))dW (t),

and the volatility of the given stock is delayed by the model for r(t), it is aproperiate

for the delayed model we treated in this paper is to assume that the free rate r(t) is to

be modeled by the following (Sdde)

dr(t) = µ(xt − λYt)2dt+ θ(xt − λYt)dW (t), for t ≥ 0 r0 = r
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where

Yt =

∫ 0

−δ
eλsdsxt = x0t , t ≤ 0

for some θ > 0, λ > 0 and x ∈ R. xt = ϕ for t ∈ [−δ, 0]-deterministic bounded measur-

able function. Since xt − λYt is the deviation of the logarithm of the present value of

the process x from its exponentially weighted average λY , then the model for r(t) we

suggest will fit with the model for delayed stock model.
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